100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Case uitwerking

Example Questions (Exam Practice) - Fluid Dynamics

Beoordeling
-
Verkocht
-
Pagina's
26
Cijfer
8-9
Geüpload op
01-04-2024
Geschreven in
2020/2021

Example Questions (Exam Practice) - Fluid Dynamics

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
1 april 2024
Aantal pagina's
26
Geschreven in
2020/2021
Type
Case uitwerking
Docent(en)
Ir dr p.d. druetta
Cijfer
8-9

Onderwerpen

Voorbeeld van de inhoud

Fluid Dynamics Summary Examples and Tutorials 2020


1 Tutorial: Mass Balances (1)

1.1 Question 1

Consider two connected well-stirred containers with same volume V m3 . Water is pumped from v1 to v2 and
3
back at rate of ϕv ms . Both containers remain full and volume of tubes can be neglected. At t = 0, salt
concentration in volume 1 is c0 mol
m3 , volume 2 is filled with pure water.

a. Give relationship between salt concentration (c1 and c2 ) at any
time t.
Make a sketch. Salt is conserved, thus, at any time the total amount present
in V1 and V2 equals amount c0 initially present in V1 . V1 c1 + V2 c2 = V1 c0 , and
since V1 = V2 , we can write c1 + c2 = c0 . In contrast to mass, concentration is
not a conserved entity.
b. Give expression for c2 as function of time.
The mass or component balance for c2 in terms of concentration reads:

→ V dcdt = ϕv c1 − ϕv c2 → amount of salt entering V2 (per unit time) is amount
2


entering from V1 (> 0) minus amount leaving V2 (< 0).

To solve the differential equation above requires expressing c1 as function of c2 .
From the relation found in A we know c1 = c0 − c2 . We then obtain:

dc2
V = ϕv (c0 − 2c2 ) − ϕc2 = ϕv (c0 − 2c2 )
dt
Z
dc2
Z Figure 1: Question 1a
V dt = ϕv (c0 − 2c2 )dt
dt
Z Z
V dc2 = ϕ(c0 − 2c2 )dt
Z Z
dc2 ϕv
= dt
c0 − 2c2 V

Apply boundary conditions:
Z c2 Z t
dc2 ϕv
= dt
0 c0 − c2 0 V

1 c2 ϕv t
− ln(c0 − c2 ) = t
2 0 V 0
c0 − 2c2 2ϕv
= e− V t
c0
1  2ϕv

c2 (t) = c0 1 − e− V t
2
Figure 2: Question 1d
c. What is the final salt concentration in both containers?
→ check lim → ∞ → c2 = 21 c0 = c1

d. Draw schematically in one figure c1 and c2 as function of time.
See figure on the right.




1

,1.2 Question 2

Consider a factory that discharges a stream of 5 sl with a toxic
component, at concentration of 12mM . Governmental regu-
lations allow discharging this toxic component to the environ-
ment at concentrations of 2mM or below. To do so, the factory
dilutes the toxic stream into a effectively stirred tank of vol-
ume V . The natural water used for dilution has a background
concentration (cin ) of the same toxic component of 0.04mM .
The effluent is discharged to the nearby river. There are no
chemical reactions going on in the tank
a. Give the mass balance for the water and a molar
balance for the toxic component assuming steady-state
conditions. Figure 3: Question 2a
First, make a sketch (see figure on the right). We see that there are two types of balances:

1. Volumetric or solution (water + toxin) balance in sl . Has two incoming and 1 outgoing stream:

ϕv,in + 5 = ϕv,out

mmol l
2. Balance for only the toxin in s , which is the product of volumetric flow (in s and concentration (here
in mM , i.e. mmol
l ):
ϕv,in ∗ 0.04 + 5 ∗ 12 = ϕv,out ∗ 2

b. How much water (steady-state) is required for complying to governmental regulations?

Substitute the volumetric/solution balance into the toxin balance:

ϕv,in ∗ 0.04 + 5 ∗ 12 = (ϕv,in + 5) ∗ 2
0.04ϕv,in ∗ 60 = 2ϕv,in + 10
1.96ϕv,in = 50
l
ϕv,in = 25, 51
s

After a long time of operation the factory decides that the tank requires maintenance. The inflow of the toxic
component is stopped and they start flushing the tank with just natural water. The tank is still effectively
stirred and remains completely filled all the time. c. Give the concentration c as function of time.
The molar balance of the toxic:
dc
V = ϕv,in cin − ϕv,out cout
dt

Suppose flushing is with clean water, then there is no inflow of toxic, inflow term would be zero and the
integration is straightforward.
Suppose we use natural water with toxic component 0.04mM , then:

• cout = c due to effective stirring.
• ϕv,in = ϕv,out = ϕv due to steady state

This gives:
dc
V = ϕv cin − ϕv c = ϕv (cin − c)
dt
dc ϕv
=
dt(cin − c) V




2

, Integrate and use boundary conditions at t → c and at t0 → c0 :
Z c Z t
dc ϕc
dt = dt
c0 dt(cin − c) 0 V

Z c Z t
dc ϕc
= dt
c0 cin − c V 0


c ϕv t
−ln(cin − c) = t
c0 V 0


cin − c ϕv
= e− V t
cin − c0

ϕv
c(t) = cin − (cin − c0 )e− V t




2 Lecture: Dimensional Analysis (1b)

2.1 Example: Force on a Sphere in a Flow

Suppose we are given the following info for force on a sphere in a flow. We need to define an equation.

K = f (Du, V r, ρ, η) → K = Dua ∗ V rb ∗ ρc ∗ η d ∗ constant


First, define the different parameters in Mass/Length/Time (or put in basic units).
       
ML L M M
K = [N ] = Du = [L] Vr = ρ= η = Pa ∗ s =
T2 T L3 LT

   a  b  c  d
ML L M M
→ = L ∗ ∗ ∗
T2 T L3 LT

This gives: M = 1 = c + d L = 1 = a + b − 3c − d T = −2 = −b − 3c
Rewrite for d as function of the other parameters: a = 2 − d b=2−d c=1−d
Put the above back into the original equation:

K = Du2−d ∗ V r2−d ∗ ρ1−d ∗ η d ∗ constant

Rewrite into:  d  d
K η η
= ∗ constant = f = f (Re)
Du2 V r2 ρ DuV rρ DuV rρ




3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
LeYaoo Rijksuniversiteit Groningen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
91
Lid sinds
9 jaar
Aantal volgers
73
Documenten
7
Laatst verkocht
3 maanden geleden

3.9

10 beoordelingen

5
2
4
5
3
3
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen