100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

YSS-20306 Lecture summary Quantitative

Rating
4.0
(2)
Sold
13
Pages
30
Uploaded on
17-12-2018
Written in
2018/2019

Dit is een samenvatting van alle colleges van het vak Quantitative and Qualitative Research Techniques in the Social Sciences (YSS-20306). Het bevat de slides van Quantitative, aangevuld met wat er in de colleges is verteld. Deze samenvatting is geheel in het Engels. Er staan alleen wat losse begrippen extra uitgelegd in het Nederlands, ter verduidelijking.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
The lectures are based on this book (references are made).
Uploaded on
December 17, 2018
Number of pages
30
Written in
2018/2019
Type
Summary

Subjects

Content preview

ÝSS-20306 Lecture summary
Quantitative


Lecture 1 – Simple Regression Analysis
29-10-2018

Dependence techniques
• 2 different sets of variables
o Outcome
o Predictors
• Example:
o Variable y → Record sales (a.k.a. dependent or criterion)
o Variables xj → attractiveness of band, advertising budget, and number of plays radio
(a.k.a. independent)
o The variable y can be predicted by the three predictors (xj)
• This is used to:
o Predict scores on y on the basis of scores on xj
o To investigate the effect of the xj’s on y

SINGLE PREDICTOR MULTIPLE PREDICTORS
INTERVAL-SCALE PREDICTOR 1. Simple regression 2. Multiple regression
NOMINAL-SCALE PREDICTOR 3. Oneway ANOVA 4. Factorial ANOVA


Interdependence techniques
• To investigate the correlation or association between a number of variables.
• No distinction between outcome and predictor

TWO VARIABLES MULTIPLE VARIABLES
INTERVAL-SCALE PREDICTOR 5. Correlation 6. Exploratory factor analysis
NOMINAL-SCALE PREDICTOR 7. Cross-tabulation 8. Loglinear analysis


Covariance
Statistical model: linear relation
Covariance measures the extent to which positive/negative deviations from the mean on one
variable (proportionally) go together with positive/negative deviations from the mean on the other
variable.
∑𝑖(𝑥𝑖 −𝑢
̅)(𝑦𝑖 −𝑦̅) Covariantie is een parameter die bij
• 𝑐𝑜𝑣(𝑥, 𝑦) = 𝑁−1
= 4.25
twee toevalsvariabelen aangeeft in
• Formula multiplies deviations from means welke mate de beide
• Xi and yi represent the scores on the variables toevalsvariabelen (lineair) met elkaar
• N represents the number of observations samenhangen. (Veronderstelt lineair
verband)
• Means are 5.4 and 11.0
• Terms in numerator are (5 – 5.4)(8 – 11.0) etc.
• To make sense, variables have to be measured on interval-scale
o If this is done, the ratios of the differences between values is meaningful and these
can be used.
• Disadvantage of covariances
o The value that you get, depends on units of the measurement scale (e.g., litres versus
millilitres)
o Not limited to a general, particular range (values can become enormous)


Outcome (y) = red, predictors (xj) = blue

,ÝSS-20306 Lecture summary
Quantitative

Pearson correlation
• Forms a solution to the problem mentioned above, because the values will always fall
between 0 and |1|
• Divides covariance by product of standard deviations → Pearson correlation
𝑐𝑜𝑣(𝑥,𝑦)
o 𝑟(𝑥, 𝑦) = 𝑠𝑥 𝑠𝑦
= 0.87
• Measures linear relationship, so … (at least) interval-scaled variables
o With ordinal data use Spearman’s rho, Kendall’s tau, biserial, point-biserial
• Does not depend on units of the measurement scale

Correlation
Measure of linear relationship


r = 1 assumes perfect linear relation

r = .999 → Positive relation, slope ≈ 1

r = -.999 → Negative relation, slope ≈ -1

r = .763 → Smaller correlation

r = .809 → Not linearly correlated

r = .354 → Increasing ‘mess’

r = .056 → Not even slightly correlated




Statistical inference Fisher Z-transformatie is
• Null hypothesis significance testing (NHST) (are two-tailed!!) een manier om de
o Test H0: r = rhyphotesized versus H1: r ≠ rhypothesized verdeling van Pearson te
1 1+𝑟 veranderen zodat deze
o Fisher z transformation: zr = 2 √𝑁 − 3 ln (1−𝑟) = 1.87
normaal verdeeld wordt.
o Test H0: r = 0 versus H1: r ≠ 0
𝑟 √𝑁−2
o 𝑡𝑟 = = 3.07 N – 2 are degrees of freedom
√1−𝑟 2
• Assumptions that need to be met
o Independent observations
o Variables normally distributed (to make sure that the p-value is correct)
o Assumptions necessary for applicability of theoretical distributions, i.e. validity of p-
value
o Sample obtained by simple random sampling (all have the same chance to enter the sample)
• Also possible to create (e.g. 95%) confidence intervals
o If we draw same-sized samples over and over again, 95% of the correlations will be in
this interval




Outcome (y) = red, predictors (xj) = blue

,ÝSS-20306 Lecture summary
Quantitative

Measure of relationship
Correlation
• Effect size r2

• Field (citing Cohen, 1988, 1992) Others (citing Cohen, 1988, 1992)
0.01 is small 0.01 is small
0.09 is medium 0.06 is medium
0.25 is large 0.14 is large

• Also called coefficient of determination (proportion of variance accounted for)

Dependence
Simple regression
• Goal and diagram
• Predict outcome variable (criterion/dependent) y from predictor variable x (independent)
• Investigate effect of x on y


Adverts Packets
watched bought



Simple regression Interesting
Model Typically uninteresting
• Regression equation Error/residual
yi = f(xi) = (b0 + b1x1) + εi
= model + error/residual
Regression weights/coefficients
B0 (intercept)
B1 (slope)
Estimated such that variance (εi) is as small as possible
(method of least squares) →

Estimates: b̂0 and b̂1
Predicted scores: ŷi = b̂0 + b̂1xi
𝑐𝑜𝑣(𝑥,𝑦)
• b̂1 will be 𝑣𝑎𝑟(𝑥)
o Best (smallest variance)
Linear
Unbiased (expectation is equal to true b1 in the population)
Estimator (BLUE)
o If (assumption) εi = independent, identically distributed N(0,σ)
• Based on measure of linear relationship, so … assumes, (at least) interval-scaled outcome
and predictor variables
• Assumption of normally distributed residuals also requires (at least) interval-scaled outcome
variables
• Overall statistics: r(y, ŷ) = R = (multiple) correlation coefficient
• R2 = coefficient of determination



Outcome (y) = red, predictors (xj) = blue

, ÝSS-20306 Lecture summary
Quantitative

Overall statistics & SPSS
Test H0: R = 0 versus H1: R ≠ 0




Detailed statistics




Extra: t-test by simple regression: dummy variable
T-test: test of the average in the first group differs from the average from the second group




Assumptions
• Homogene variances (variance in the first group is about as big as variance in the second group)
• The larger the sample, the smaller the significant coefficients will be (so, pay attention to scale)


Outcome (y) = red, predictors (xj) = blue

Reviews from verified buyers

Showing all 2 reviews
3 year ago

5 year ago

4.0

2 reviews

5
0
4
2
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
nicolest Wageningen University
Follow You need to be logged in order to follow users or courses
Sold
72
Member since
7 year
Number of followers
54
Documents
25
Last sold
1 year ago

3.5

12 reviews

5
2
4
4
3
5
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions