1. Spierwerking -jdens inspanning
1.1 Energiewisseling in spierweefsel
ATP aanmaak: adenine + ribose + fosfaatgroepen
Laatste twee bindingen tussen
fosfaatgroepen zijn energierijk
1.1.1 De basis 3 energiesystemen
ATP kan op 3 manieren aangemaakt worden:
• uit energierijke fosfaten (anaeroob) = het fosfaatsysteem
• Bjdens de glycolyse onder producBe van melkzuur (anaeroob) = anaerobe glycolyse
• door oxidaBeve fosforylering (aeroob) = aeroob metabolisme
® keuze is aGankelijk van de duur en intensiteit van de inspanning
1.1.1.1 De energierijke reservefosfaten in de spier
In cellen: ATP en CP
• CP = creaBnefosfaat = gefosforyleerde vorm van creaBne
• fosfaatmolecule met hoge energie-inhoud dat energie opslaat
• wordt niet rechtstreeks ingezet als energieleverancier, fungeert als energiebuffer en
voorkomt ATP-schommelingen
Skeletspiervezel contraheert
• ATP verbruik
• ADP + creaBnefosfaat ® ATP + creaBne
- CP draagt energierijke fosfaatgroep over aan ATP
- katalysator: creaBnekinase
Skeletspiervezel in rust
• reservevorming
• ATP + creaBne ® ADP + creaBnefosfaat
- ATP draagt energierijke fosfaatgroep terug over aan CP
- Katalysator: creaBnekinase
1
,Lifestyle
ATP voorraad: enkele seconden
CP voorraad: 10 extra seconden ATP-vorming
® +- 15 seconden
® andere mechanismen nodig om ADP in
ATP om te zeTen
ATP-producBe in de cel op 2 manieren:
• anaeroob in cytosol: glycolyse
• aeroob in mitochondriën: oxidaBeve fosforylaBe
1.1.1.2 ATP vorming tijdens de anaerobe glycolyse
Glycolyse= afbraak van glucose
• wat?
- productie van atp
• hoe?
- in afwezigheid van glucose (anaerobe omstandigheden)
• waar?
- ter hoogte van het cytosol (niet in mitochondria)
• 1 molecule glucose (6C) wordt omgezet in 2 moleculen pyruvaat
• 2 ATP moleculen worden geïnvesteerd en 4 ATP moleculen worden gegenereerd ®
neTowinst per glucosemolecule: 2 ATP
• de H+ ionen en elektronen vrijgekomen bij oxidaBe worden gebonden aan co-enzym
NAD+
• 2 moleculen NAD+ worden gereduceerd tot 2 NADH moleculen
- NADH is een elektronendonor: vangt elektronen op, gee] ze door en stelt de
energie eruit vrij
- cel hee] beperkte voorraad NAD+ dus NADH moet snel elektronen kunnen
overdragen om weer beschikbaar te zijn
- overdracht naar moleculen aGankelijk van cellulaire omstandigheden
- NAD+: lage energie
- NADH: hoge energie
2
,Lifestyle
® Anaeroob vervolg van a^raak: hoe verder met pyrodruivenzuur?
• in anaerobe omstandigheden is glycolyse enige bron van ATP-vorming
• pyruvaat treedt op als elektronenacceptor in cytosol
• pyruvaat wordt gereduceerd tot 2 x lactaat/melkzuur
- door elektronenoverdracht uit NADH
• lactaat/melkzuur treedt op als protonendonor
- hierdoor daalt pH
- bij pH daling treedt denaturaBe op
• lactaat/melkzuur diffundeert uit cel naar bloed
- wordt gebufferd aan protonen, dus geen effect op pH
• verdere vorming van H+ ionen leidt toch tot verzuring (= metabole acidose)
- levert inacBvaBe van enzymen op spiervermoeidheid
Lactaatvorming is belangrijk om vorming ATP mogelijk te maken in anaerobe
omstandigheden, maar blij] door verzuring Bjdelijke oplossing
1.1.1.3 ATP vorming door oxidaBeve fosforylering
Oxidatie van pyrodruivenzuur (pyruvaat) naar acetylCoA en CO2 - aeroob vervolg
• wat?
- productie van acetylCoA
• hoe?
- in aanwezigheid van zuurstof
• waar?
- ter hoogte van mitochondria (mitochondriale matrix)
3
, Lifestyle
• pyruvaat wordt d.m.v. transporteiwitten in mitochondria ingevoerd en geoxideerd
• acetylgroep (CH3-CO-) van pyruvaat wordt verbonden met co-enzym A (CoA) tot het
AcetylCoA
• NADH en CO2 wordt gevormd
- 3 C ® 1 C wordt uitgeademd CO2
2 C: acetyl
• deze reacties worden door 3 enzymen gekatalyseerd
Citroenzuurcyclus (Krebscyclus) - aeroob vervolg
• wat?
- Vrijmaking H+ en e-
• hoe?
- in aanwezigheid van zuurstof
• waar?
- ter hoogte van mitochondria (mitochondriale matrix)
• acetlgroep van acetylCoA wordt toegevoegd aan reactieketen die doorgaat in
mitochondriale matrix: de citroenzuurcyclus
• acetylgroep wordt in aerobe omstandigheden geoxideerd tot CO2
• acetylgedeelte bindt aan 4C-molecule en vormt zo 6C-molecule (citroenzuur)
• 2 C gaan verloren via CO2, terug 4C-molecule
• elektronen en H+ ionen worden vrijgemaakt en
- gebonden aan NAD+ met vorming van NADH
- gebonden aan FAD (elektronenacceptor) met vorming van FADH2
• 4C molecule kan na enkele omzettingen weer ingezet worden aan begin cyclus
• per cyclus wordt 1 ATP geproduceerd
4