100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Complete WEEK7 note: Machine Learning & Learning Algorithms(BM05BAM)

Rating
-
Sold
-
Pages
7
Uploaded on
12-03-2024
Written in
2023/2024

THIS IS A COMPLETE NOTE FROM ALL BOOKS + LECTURE! Save your time for internships, other courses by studying over this note! Are you a 1st/2nd year of Business Analytics Management student at RSM, who want to survive the block 2 Machine Learning module? Are you overwhelmed with 30 pages of reading every week with brand-new terms and formulas? If you are lost in where to start or if you are struggling to keep up due to the other courses, or if you are just willing to learn about Machine Learning, I got you covered. I successfully passed the course Machine Learning & Learning Algorithms at RSM with 7.6, WITHOUT A TECHNICAL BACKGROUND before this Master. So if you are from Non-tech bachelor program, this note will navigate the knowledge you should focus on to pass the exam and successfully complete assignments, and for people with some machine learning knowledge, this note will certainly make your life easier and gets you a booster to your grade.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Uploaded on
March 12, 2024
Number of pages
7
Written in
2023/2024
Type
Class notes
Professor(s)
Jason roos
Contains
All classes

Subjects

Content preview

12.4: Clustering Methods
Clustering: a technique to find clusters in a data set from the observations of a data set by
partitioning them into different groups so that the observations within each subgroups are quite
homogeneous to each other, while observations in different clusters are quite different form
each other.

Clustering is a unsupervised problem that attempt to discover structure on the basis of a
dataset, without labels to use for training.

Hard clustering without a statistical model is the primary way discussed here.

Clustering has two best known approaches
1. K-means Clustering : seeking to partition the observations into a pre-specified number
of clusters
a. Example: Where customers spend time
2. Hierarchical Clustering : we do not know I advance how many clusters we want, and it
builds a tree-like visual representations: dendrogram
a. Example: product categorization

Choice depends on whether you think clusters are disjoint or have a hierarchical arrangement

12.4.1: K-Means Clustering
K-means Clustering: partitions observations into K distinct, non-overlapping clusters.

K-means Clustering’s clusters C1,..Ck must satisfy two conditions
1. Each observations belongs to at least one of K clusters
2. The clusters are non over-lapping: no observations belong to more than one cluster

Good clustering for K-means clustering: the sum of within-cluster-variations for cluster Ck is as
small as possible.
- Goal: minimizing the sum of the measure of within-cluster-variations: W(Ck) +
maximizing the sum of measure of inte-cluster-variations
- The unit of within-cluster variation: weighted sum of Euclidean distance of every
observations for every cluster
o Divided by the total number of observations in the Kth cluster




Input distance matrix

, Process: to find a local optimum out of the K^n ways of minimizing
1. Specify the desired number of clusters K
2. Randomly assign a number from 1 to K to each of the observations as an initial cluster
assignments
3. Iterate until the cluster assignments stop changing
a. For each of the K clusters, compute the cluster centroid as the mean of the
observations assigned to each cluster.
i. Kth cluster centroid: a vector of the p feature means for the observations
in the kth cluster
b. Assign each observations to the cluster whose centroid is closet in the mean of
Euclidean distance.
4. Run the algorithm multiple times from different random cluster assignments and select
the best solution as the local optimum
a. The performance of the result obtained will depend on the initial random cluster
assignment.
$13.26
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
ArisMaya Erasmus Universiteit Rotterdam
Follow You need to be logged in order to follow users or courses
Sold
49
Member since
4 year
Number of followers
30
Documents
20
Last sold
2 months ago
Let's Pass Together!

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions