100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Task 4 - MEG, EEG, oscillations & social cognition

Rating
-
Sold
1
Pages
11
Uploaded on
05-03-2024
Written in
2023/2024

Summary of Task 4 of Methods of Cognitive Neuroscience

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 5, 2024
Number of pages
11
Written in
2023/2024
Type
Summary

Subjects

Content preview

TASK 4: MEG, EEG, OSCILLATIONS &
SOCIAL COGNITION
INTRODUCTION INTO MAGNETOENCEPHALOGRAPHY (MEG)

HOW DOES MEG WORK?

 Synaptic activity leads to small magnetic fields  perpendicular to electrical current
 Non-invasive
 Recorded with neuromagnetometer – positioned around outside of the head
 Underlying electrical activity deduced by mathematical modelling
 MEG traces can be recorded & averaged over a series of trails to obtain event-related fields
(ERFs)
 Magnetic fields detected using superconducting quantum interference devices (SQUIDs)
 Placed at various points on the surface of the scalp
 Magnetic fields must be sampled over a range of locations  distribution of electrical
currents inside brain can be calculated accurately
 Magnetometers – cover whole scalp & complete magnetic-field pattern can be measured
simultaneously
 Newest one – 306 SQUIDs at 102 measuring sites
 Each of 102 sensors measures in x, y & z directions
 Immersed in liquid helium at -169°C & positioned close to the head
 Preventing contamination with fields from e.g., power lines  measurements inside a
room made from several layer of aluminium & mu-metal
 Iron & nickel – high magnetic permeability  external magnetic fields are “trapped” in it,
shielding room inside
 All magnetic materials are forbidden inside the shielded room
 Direction of magnetic flux outside head determined by direction of current within
group of neurons , according to right-hand rule of electromagnetism

CALCULATING THE SOURCE OF MAGNETIC FIELDS

 Inverse problem – brain is spherical & active areas can be adequately represented by
single / multiple current dipoles
 Computer makes initial guess to where dipoles might be & then calculates external
magnetic field that these dipoles would produce
 Compares computed field to measured field
 Repeats calculation with dipoles at different positions until calculated &
experimental results match
 2 or more regions of brain active – measured magnetic field depends on position & strength
of dipoles & extent to which neurons in different regions fire at the same time

,  Minimum current estimate technique
 Gives most probable distribution of currents in brain, calculated according to
concept of minimum norm
 Advantage: used without making any specific assumptions about way in which
currents are distributed

ADVANTAGES & LIMITATIONS

 Same temporal resolution as ERPs BUT better spatial resolution
 Magnetic fields are not distorted as they pass through the brain, skull, scalp
 Limitations
 Current flow needs to be parallel to surface of the skull (recorded neurons usually
within sulci)
 Magnetic fields generated by brain are extremely weak  room that is
magnetically shielded from all external magnetic fields
 Room for improvement in signal-to-noise ratio
 Increased by placing SQUID sensors closer to brain BUT difficult, because they have to be
at liquid-helium temperatures at all times

MEG VS. EEG


MEG EEG


Based on dipolar currents, measure the same neuronal currents


Very good temporal resolution


Better spatial resolution – skull & scalp do Skull & scalp distort electrical potential
not distort magnetic fields


Currents have to be tangential to brain Better at detecting currents that originate
surface – all other currents cancel each deep inside the brain / are radially
other out oriented


Cheaper


DATA ACQUISITION & SIGNAL ANALYSIS IN EEG

 Important to adhere to standardised electrode locations – distance of 2-3cm between
electrodes required
 Improved special resolution with high-density recordings (64-128 electrodes
enough)

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
emma2296 Maastricht University
Follow You need to be logged in order to follow users or courses
Sold
31
Member since
2 year
Number of followers
3
Documents
30
Last sold
3 months ago

1.0

1 reviews

5
0
4
0
3
0
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions