100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Samenvatting Fysica PET (minor PCM)

Rating
-
Sold
3
Pages
64
Uploaded on
05-10-2018
Written in
2018/2019

Samenvatting fysica PET (minor PCM). Colleges, practicum, zelfstudietaken. Hanzehogeschool Groningen, Minor PET/CT/MRI .

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Unknown
Uploaded on
October 5, 2018
Number of pages
64
Written in
2018/2019
Type
Summary

Subjects

Content preview

FYSICA PET
coMOpet1 Opfriscollege PET
Geschiedenis
- 1931: Cyclotoron (Ernest Lawrance)
● cyclotron → maken radioactieve bron
- 1934: Kunstmatige radioactiviteit (Joliot-Curie)
- 1938: Ontdekking technetium-99m (emilio Segre)
- 1958: Anger-camera
● Opnemen radioactiviteit, opnemen elektrisch signaal. Soort TV kast wat boven de patiënt
hangt
● Omzetting naar elektrisch signaal
● Gebruiken vandaag de dag nog steeds hetzelfde principe
- 1959: 99Mo/99m Tc generator ‘technetiumkoe’
- 1964: Technetium-99m radiotracers
● Technetium werd eind jaren 60 ontdekt
- 1980: SPECT en PET
- 1990: Gammacamera’s met een resolutie van 5mm
● Camera’s kwamen eind 90 in de ziekenhuizen
- 2000: SPECT-CT
- 2001: PET-CT GE
- 2011: Philips brengt PET MRI op de markt

Lawrence begon de ontwikkeling van het cyclotron in 1929. Het eerste model was ongeveer tien centimeter groot, gemaakt van
draad en kostte hooguit $25. Door middel van steeds grotere machines slaagde hij erin cruciaal gereedschap te maken voor zijn
experimenten in hoge-energie natuurkunde. Rond deze machines bouwde hij het zogenaamde Radiation Laboratorium (Rad Lab),
dat één van de meest vooraanstaande laboratoria voor natuurkundeonderzoek zou worden. Hoewel hij in 1934 patent[1] kreeg op
het cyclotron, vroeg hij er geen royalty’s voor. Ook was hij de uitvinder van de Calutron isotopenscheider[2] waarvan hij de octrooi-
rechten aan de Amerikaanse regering verkocht voor een vergoeding van een dollar.



Werking van de PET
PET = Positron Emissie Tomografie
Grondregels PET
- Een positron (e+) met variabele energie
- Positron recombineert (annihileert (annihilatie = botsing)) met elektron en genereert 2 fotonen
● Elke foton energie van 511 keV (wet behoud van energie)
● Onder hoek van 180 ̊ (wet behoud van impuls)

- Een botsing, een annihilatie. Molecuul splitst zich op in 2 fotonen, beide met 511 keV.
- PET camera kan dit signaal opvangen. Wordt opgenomen en wordt verwerkt.
Hoe sneller die dat doet, hoe gevoeliger de camera is.
- Continu signalen afgevuurd op de detector.
- Het verwerkingsgedeelte van de camera moet zo kort mogelijk zijn. Anders mis je signalen en neemt de
gevoeligheid van je camera af.

,- Hoe beter je camera is, des te sneller gaat ie werken, des te korter de dode tijd wordt, des te gevoeliger
wordt de camera.




Detectie signaal
Hoe sneller het signaal wordt verwerkt → hoe sneller de scan gaat




Response time detector
- Start zodra detector A signaal ontvangt
- Sluit zodra signaal detector B is uitgedoofd
Hoe korter, hoe sensitiever




Signal delay time
- De tijd die het kost voordat het scintillatiemateriaal het signaal verwerkt heeft
- Ideaal: ieder foton wordt omgezet in een puls en verder verwerkt; ook bij hoge countrate
- Snelle decay time
● Verlaging dode tijd
● Verlaging randoms




Detection events
Zo snel mogelijk:
- Signaal ontvangen
- Bepaalde hoeveelheid licht ontvangen
- Signaal B starten

, - True coïncidentie (werkelijke)
● Deze wil je hebben. Zo snel mogelijk werkt, des te scherper wordt je plaatje
- Scatter coïncidentie (verstrooide)
● Niet 180 ̊ → niet goed
- Random coïncidentie (willekeurige)
● Te veel? → tumor kan opschuiven (wil je zo min mogelijk)




Stopping power
- Gemiddelde afstand welke door een foton wordt afgelegd in het kristal, voordat het zijn energie afgeeft
● Zoveel mogelijk fotonen energie afgeven → hoge sensitiviteit
hogere energie → hogere sensitiviteit
● 511 keV: hoge verzwakkingscoëfficient (μ)
- Hoge dichtheid scintillatiemateriaal
- Korte attenuation length
NaI is geen optie voor PET → lage stoppingpower
Verzwakking in kristal heeft invloed op je uiteindelijke
opname. Hoe hoger de dichtheid is van je scintillatiemateriaal,
hoe beter je plaatje.
$6.71
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
FamkeL Hanzehogeschool Groningen
Follow You need to be logged in order to follow users or courses
Sold
141
Member since
7 year
Number of followers
80
Documents
2
Last sold
1 month ago

3.4

29 reviews

5
5
4
8
3
10
2
5
1
1

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions