100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Einsendeaufgabe Statistik I - Wahrscheinlichkeitsrechnung, bestanden & korrigiert (2023)

Rating
-
Sold
-
Pages
5
Uploaded on
25-02-2024
Written in
2023/2024

Bestandene Einsendeaufgabe aus dem Modul "Statistik I" mit Kommentaren.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 25, 2024
Number of pages
5
Written in
2023/2024
Type
Other
Person
Unknown

Subjects

Content preview

THOENES, Joshua
FB2823GR814
Psychologie (B.Sc.) (8 Sem.) PO:04/21




Einsendeaufgabe


Statistik 1 - Wahrscheinlichkeitsrechnung und Zufallsvariablen

Aufgabe 1

Ein Trickspieler hat eine Münze so manipuliert, dass nun in 40% der Würfe „Zahl“
gezeigt wird.

a) Wie groß ist die Wahrscheinlichkeit P(„Zahl“)?

Erhält man bei einer manipulierten Münze in 40% aller Würfe das Ereignis „Zahl“ beträgt die
Wahrscheinlichkeit 1 - P(„Zahl“) = 0.4.

b) Wie groß ist die Wahrscheinlichkeit P(„Kopf“)?

Wenn eine Münze so manipuliert wurde, dass in 40% aller Würfe das Ereignis „Zahl“ auftritt
dessen Wahrscheinlichkeit P(„Zahl“) = 0.4 beträgt, lässt sich auf die selbe Weise die
Wahrscheinlichkeit P(„Kopf“) = 1 – P(„Zahl“) = 0.6 berechnen, da nur eines der beiden
Ereignisse eintreten kann.

c) Wie groß ist die Wahrscheinlichkeit bei zwei Würfen mindestens einmal „Kopf“ zu
bekommen?

Basierend auf der obigen Wahrscheinlichkeit P(„Kopf“ = K) = 0.6 und P(„Zahl“ = Z) = 0.4 ist
die Wahrscheinlichkeit mindestens einmal „Kopf“ bei zwei Würfen zu erhalten in drei von vier
Ereignissen möglich. Wenn der Ergebnisraum Ω = {KK, KZ, ZK, ZZ} = 1 lautet wird nur bei
dem Fall (ZZ) kein „Kopf“ geworfen. Es gilt also die Wahrscheinlichkeit für dieses Ereignis
auszurechnen: P(ZZ) = 0.4 * 0.4 = 0.16, das dazugehörige Komplementärereignis P(K ≥ 1)
beschreibt dabei alle Vorfälle bei dem mindestens einmal „Kopf“ geworfen wird und beträgt:
1 – P(ZZ) = 0.84.

d) Der Trickspieler schlägt Ihnen ein Spiel vor: „Ich werfe meine Münze zweimal. Wenn
mindestens einmal Kopf erscheint, geben Sie mir 20 Cent. Ansonsten gebe ich Ihnen 1
Euro.“ Berechnen Sie den Erwartungswert dieses Spiels und entscheiden Sie, ob Sie
bei dem Spiel mitmachen würden.

Der Erwartungswert E(X) berechnet sich durch die aufsummierten Produkte der Ereignisse
mit ihren Wahrscheinlichkeiten und lautet für dieses Spiel: E(X) = (-0.2) * 0.84 + 1 * 0.16 = -
0.008. Damit ist das Spiel minimal unfair, da im Durchschnitt pro Versuch ein Verlust von
0.008 Euro oder 0.8 Cent entsteht.


Seite1 PFH-Private Hochschule Göttingen 25.02.2024

, THOENES, Joshua
FB2823GR814
Psychologie (B.Sc.) (8 Sem.) PO:04/21


Aufgabe 2

Das Spiel „Schere – Stein – Papier“ ist ein Spiel für zwei Personen. Jeder der Spieler
wählt gleichzeitig eines der drei Symbole Schere, Stein und Papier. Dabei gilt: Die
Schere schneidet das Papier - wählt also „Spieler A“ Schere und „Spieler B“ Papier,
gewinnt „Spieler A“, wählt „Spieler A“ Papier und „Spieler B“ Schere, gewinnt
entsprechend „Spieler B“. Weiterhin wickelt das Papier den Stein ein (= Spieler, der
Papier gewählt hat, gewinnt) und der Stein macht die Schere stumpf (= Spieler, der
Stein gewählt hat, gewinnt). Entscheiden sich beide Spieler für dasselbe Symbol, wird
das Spiel als Unentschieden gewertet und wiederholt.

e) Betrachten wir zuerst nur Spieler A. Beschreiben Sie den Ergebnisraum für die
Entscheidung von Spieler A. Welche Wahrscheinlichkeit hat jedes einzelne der
Ergebnisse (Elemtarereignisse), wenn wir davon ausgehen, dass die Spieler sich rein
zufällig für eines der Symbole entscheiden?

Der Ergebnisraum Ω = {(Schere = SC), (Stein = ST), (Papier = PA)} = 1 beinhaltet drei
Ereignisse die zufällig gewählt werden und somit dieselbe Wahrscheinlichkeit aufweisen, teilt
man die Ergebnismenge durch drei erhält man die Wahrscheinlichkeiten für die einzelnen
Elementarereignisse P(SC) = 1/3, P(ST) = 1/3 und P(PA) = 1/3.

f) Geben Sie entsprechend den Ergebnisraum für die Entscheidung von Spieler B und
die Wahrscheinlichkeit der Elementarereignisse dieses Zufallsvorganges an.

Da Spieler B dasselbe Spiel spielt und dabei wie Spieler A zufällig entscheidet welches
Symbol er wählt sind sowohl der Ergebnisraum als auch die Wahrscheinlichkeiten der
einzelnen Elementarereignisse die gleichen wie bei e). Ω = {(Schere = SC), (Stein = ST),
(Papier = PA)} = 1 und P(SC) = 1/3, P(ST) = 1/3 und P(PA) = 1/3.

g) Betrachten wir nun die Entscheidungen beider Spieler zusammen. Beschreiben Sie
den Ergebnisraum für ein einzelnes Spiel. Wie groß ist die Wahrscheinlichkeit jedes
einzelnen Ergebnisses?

Wenn davon ausgegangen wird, dass in einem Spiel jeder Spieler sein Symbol gleichzeitig
und damit unabhängig vom Gegner wählt, diese aber dennoch pro Durchgang hintereinander
aufgeführt werden sieht der Ergebnisraum wie folgt aus: Ω = {SCSC, SCST, SCPA, STSC,
STST, STPA, PASC, PAST, PAPA). Die Wahrscheinlichkeit für alle neun möglich
eintretenden Ereignisse ist gleich und beträgt basierend auf den Wahrscheinlichkeiten der
einzelnen Elementarereignisse aus e) und f) für P(SC) = 1/3, P(ST) = 1/3 und P(PA) = 1/3,
1/3 * 1/3 = 1/9. Die Wahrscheinlichkeit der einzelnen Ergebnisse ist somit das Produkt der
vorrangegangenen Elementarereignisse.



Seite2 PFH-Private Hochschule Göttingen 25.02.2024
Free
Get access to the full document:
Download

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
JoshTh
1.0
(1)

Also available in package deal

Get to know the seller

Seller avatar
JoshTh PFH Private Hochschule Göttingen (Berlin)
Follow You need to be logged in order to follow users or courses
Sold
44
Member since
2 year
Number of followers
13
Documents
41
Last sold
2 weeks ago

1.0

1 reviews

5
0
4
0
3
0
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions