100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary CIE Physics A2 Paper 5 Notes

Rating
4.0
(40)
Sold
68
Pages
154
Uploaded on
08-08-2018
Written in
2017/2018

[The note has been updated for syllabus]. 2019 Papers Added. You might think paper 5 is hard to predict or hard to revise, this note is the solution for you. The note takes all the past paper 5 questions and answers; then categorised into the main topics; for every paper, I've added an example diagram and personal insights. The first part of the note tells how you are marked and what to write for each part. The latter part consists of all the past paper questions and answers for you to read through to read through. (Spot the similarities for different topics!)

Show more Read less
Institution
Course












Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
August 8, 2018
File latest updated on
February 20, 2020
Number of pages
154
Written in
2017/2018
Type
Summary

Subjects

Content preview

Physics A2 Paper 5 Notes
20/02/2020




Patapee Lohprasert ()

Mechanical Engineering Department, Imperial College London

,Introduction
The first thing that came to my mind after starting my A2 Physics was “why does the
practical paper looks so much harder than in AS?” If you have never done a single paper 5
then you’d likely be bombarded by cluelessness for question 1 and find it extremely hard. If
you have a lot of time then a great way to study for this paper is to keep practising, there is
only a certain amount of topics in A2 and there are so many past papers, by doing many of
them, you will be able to notice the trends for different topics asked.

However, if you don’t have much time or rather spend time on other things, this is
where this note excels at. The bread and butter of this note is the first part, you will be
guided through the different grading criteria and the amount marks for it. On top of that,
there will be a condensed list of crucial things to consider for different topics highlighted in
bold. The second part is a mark scheme question and answer for all the past papers (which
were sorted into topics) along with my personal insights highlighted in brown and an
example diagram I personally drew for every question.

Do note that the hardest part about this paper is the first question and this will be
where most of this note focuses on. Question 2 is very similar to the Paper 3 you did in AS
but rather than gathering the data and analysing, the data will be given to you and you just
need to analyse it. (There will still be a section on this.)




Brief Content
Question 1 Outline …………………………………………………………………………………………………………....... 1

Question 1 Categorised Questions & Mark schemes ………………………………….…………….......... 9

Question 2 Guidelines ……………………………………………………………………………................................... 86

, Question 1 Outline

1 Defining the problem [2 Marks]
● Independent Variable (what we change)

● Dependent Variable (the effect)
● Controlled Variable (what we do not change)


2 Methods of data collection [4 Marks]
This section may contain points from ‘additional details’ part

● Labelled Diagram (Always)

● Method to measure constants // variables (Always)
○ Distance in cm/m: Meter rule / Vernier calliper

○ Angle: Protractor, Trigonometry by measuring distance tan 𝜃𝜃 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ℎ
=
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙

○ Diameter/ Thickness: Micrometer
○ Time: Stopwatch, Light gate attached to a timer / Data-logger (to measure period
of rotation of turntable)

○ Velocity at a point: Light gates
○ Mass: Balance
○ Sound: Microphone, Sound meter, Sound detector.
○ Pressure: Bourdon gauge / Manometer or Pressure gauge

○ Temperature: Thermometer

○ Wavelength (Light): Diffraction grating (𝑛𝑛𝑛𝑛 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)/Young’s slit (𝜆𝜆 = )
𝑎𝑎𝑎𝑎
𝐷𝐷

○ Light Intensity: Light meter / Detector, LDR
○ Power: Ammeter, Voltmeter (𝑃𝑃 = 𝐼𝐼𝐼𝐼)
○ Force: Newton-meter, Extension of stretched elastic/spring

○ Magnetic Field Strength: Hall probe

• Other specific methods depending on the experiment:

Experiment that is related to generation of vibration:




Notes made by Patapee Lohprasert 1

, o Voltmeter/Cathode Ray Oscilloscope (c.r.o) connected in parallel with vibrator
in a workable circuit.

o Alternating current (AC) supply connected to vibrator
o Wait for vibrator to oscillate evenly (additional detail)

Experiment that involves oscillations:

o Use fiducial mark (mark a point to start counting +start timing, 1 oscillation when

it passes the mark; pendulum passes twice in 1 complete oscillation)
Or Light gates (place it perpendicular to the motion, 1 oscillation for each time

the circular motion cuts through the light gate)


Experiment that involves sound:

o Perform experiment in quiet room

o Method of ensuring that output from speaker is constant (Keep the frequency
constant).
o Method of reducing sound reflections from e.g. foam/speaker & microphone

close to glass.
o Window perpendicular to sound source.
o Intensity is proportional to the amplitude squared

Experiment that involves the use of wind:
o Method of producing wind e.g. Fan, wind tunnel
o Method to change wind speed e.g. Change settings // power // voltage

o Method to measure wind speed e.g. Wind indicator/detector , anemometer
o Keep windows shut // air conditioning switched off // use of wind tunnel to avoid
draughts.


Experiment that is related to resistivity:
o Method of determining resistance.

o Good contact between circuit and glass e.g. metal plates, foil, conducting putty.
o Metal plates/foil/conducting putty to cover all of the cross-sectional area in use.

o Method of securing good contact between circuit and glass, e.g. g clamps,
weights. Clean/dry the glass.




Notes made by Patapee Lohprasert 2

, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝜌𝜌)∙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ (𝑙𝑙)
o 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑅𝑅) =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝐴𝐴)



Experiment that involves the use of light:

o Use high intensity lamp // collimated beam // laser
o View with the same eye.

o Perform experiment in a dark room/tube
o Direction of light is perpendicular to glass sheets/constant orientation.
o Method to check output of lamp is constant e.g. measure current through //p.d.

across lamp // regularly check V0 with no glass.

o Method of producing monochromatic light e.g. filter/coloured LED.


Experiment that involves circuits underwater:

o ensure that the electrical connections/wire to the LDR are waterproof




Experiment that involves circuits:
o Add variable resistor if you need to adjust the output power (e.g. to change the
frequency of motor)




Experiment that involve the use falling objects:
o Keep starting point constant/drop object from same position/ use of
electromagnet to drop object/ ensure mass is dropped from fixed point/ check

object falls vertically


Experiment that induces e.m.f in a coil:
o Two independent coils labelled X and Y.
o Alternating current in coil X
o Voltmeter in coil Y

o Use c.r.o. to determine period/frequency or read off signal generator.

o Keep coil Y and coil X in the same relative positions.
o Keep frequency of power supply constant.
o Avoid other alternating magnetic fields.




Notes made by Patapee Lohprasert 3
$14.99
Get access to the full document:
Purchased by 68 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing 7 of 40 reviews
2 year ago

3 year ago

4 year ago

Very good for cramming, especially for Question 1.

4 year ago

4 year ago

4 year ago

4 year ago

All the content covering Q1 is very good however there is little to no focus on Q2 of the paper where drawing the graph is much more complex compared to what we have to do in Paper 3. Also for most of the past papers in Q1 he has directly copied the marking scheme.

4.0

40 reviews

5
20
4
11
3
2
2
3
1
4
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
pete_lohprasert Imperial College London
Follow You need to be logged in order to follow users or courses
Sold
173
Member since
7 year
Number of followers
153
Documents
1
Last sold
1 year ago
A-Level Physics Notes

The notes are 100% accurate as the answers were took from marking schemes. Reading through the notes during revision will give you an idea the sort of question and answers for each topic. The notes are right on the key points, great for last minute cramming / revision. The physics notes are still being regularly updated and is valid for the 2019-2021 syllabus

4.0

63 reviews

5
32
4
18
3
3
2
4
1
6

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions