100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary CIE Physics A2 Paper 4 Notes

Rating
4.2
(16)
Sold
9
Pages
26
Uploaded on
08-08-2018
Written in
2017/2018

[The note has been updated for syllabus]. All the questions in the past exam papers were analysed and there were a large amount of repetitive questions; the most noticeable ones being the definitions and the topic of ultrasound. For ultrasound this note consists of all the possible question and answer they will ever ask you (It has never changed so far, even the newest ones). The other parts of the notes were a collection of questions and answers from the mark scheme that are hard to answer or difficult to guess what the examiner wants. This is a great tool for cramming as well as understanding the concepts.

Show more Read less
Institution
Course













Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
August 8, 2018
File latest updated on
February 13, 2019
Number of pages
26
Written in
2017/2018
Type
Summary

Subjects

Content preview

Physics A2 Paper 4 Notes
Last Edited: 13/2/2019




Patapee Lohprasert ()

Mechanical Engineering Department, Imperial College London

, Table of Contents
1 Gravitational Fields and Electric Fields .......................................................................................... 1
2 Magnetic Fields ............................................................................................................................... 2
3 Circular Motion ................................................................................................................................ 4
4 Oscillations ....................................................................................................................................... 5
5 Thermal Physics ............................................................................................................................... 6
6 Transformer .................................................................................................................................... 10
7 Capacitors ...................................................................................................................................... 11
8 Electronics & Communication ..................................................................................................... 12
9 OP-AMPS........................................................................................................................................ 15
10 Quantum Physics ......................................................................................................................... 16
10.1 Nuclear Physics ........................................................................................................................... 16
10.2 Ultrasound .................................................................................................................................. 17
10.3 Photoelectric Effect..................................................................................................................... 18
10.4 Band Theory ................................................................................................................................ 20
10.5 Radioactivity ............................................................................................................................... 21
10.5 X-ray ............................................................................................................................................ 22

,1 Gravitational Fields and Electric Fields
1.1 Important Definitions
Field of force: region (of space) where a force is experienced by a particle
Gravitational Field: region of space where a mass experiences a force
Gravitational Field Strength: Force per unit mass
Electric field strength: force per unit positive charge acting on a stationary charge
Gravitational potential: work done in bringing unit mass from infinity to the point
Electric potential: work done/ energy in moving unit positive charge from infinity to the
point
Newton’s law of gravitation: force proportional to product of the two point masses and
inversely proportional to the square of their separation
Coulomb’s Law: force proportional to product of charges and inversely proportional to
square of separation


1.2 Key Equations
Gravitational Field:
𝐺𝑚1 𝑚2
1. 𝐹= (Gravitational Force 𝐹 , 𝐺 = 6.67 × 10−11 )
𝑟2
𝐺𝑚
2. 𝜙 = − (Gravitational Potential 𝜙)
𝑟


Electric Field:

𝑞1 𝑞2
1. 𝐹 = (Electrical Force 𝐹, 𝜖0 = 8.85 × 10−12 )
4𝜋𝜖0 𝑟 2
𝑉
2. 𝐸 = (Electric Field Intensity 𝐸, distance of two charged
𝑑

plates, 𝑑)
𝑄
3. 𝑉 = (Electric Potential 𝑉)
4𝜋𝜖0 𝑟


1.3 Exam Style Questions and Key Points
State what is meant by a line of force in
• A gravitational field: tangent to line gives direction of force on a small test mass
• An electric field: tangent to line gives direction of force on a small positive test
charge


Similarities and differences between gravitational force field and electric force field
around a charged metal sphere isolated in space.
• Similarities:

, • radial fields
• lines normal to surface
• greater separation of lines with increased distance from sphere
1
• field strength ∝
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒)²
• Differences:
• gravitational force (always) towards sphere
• electric force direction depends on sign of charge on sphere (towards or away
from sphere)


Why gravitational potential is a negative quantity:
• Gravitational potential at infinity is zero
• Gravitational force attractive so work done as object moves from infinity so potential
is negative
• OR, gravitational force is (always) attractive
• work is done is by masses so negative as they come together


Why the electric field strength in metal sphere is zero
• charges in metal do not move
𝐹
• no (resultant) force on charges so no (electric) field (as 𝐸 = )
𝑄



Why points outside an isolated spherical conductor, the charge on the sphere may be
considered to act as a point charge at its centre:
• lines perpendicular to surface OR, lines are radial
• lines appear to come from center



2 Magnetic Fields
2.1 Important Definitions
Tesla: uniform magnetic flux normal to long straight wire carrying a current of 1A creates
force per unit length of 1 Nm^-1
Faraday’s law: Induced e.m.f is directly proportional to the rate of change of magnetic flux
∆𝑁𝛷
linkage. (𝑉 = )
∆𝑡
Lenz’s law: induced e.m.f./current produces effects in a direction that opposes the change
causing it
Quantisation of charge: charge exists in discrete and equal quantities


1.2 Key Equations
1. 𝐹 = 𝐵𝐼𝐿 (Magnetic Force 𝐹, Magnetic Field Strength 𝐵, length 𝐿)

, 2. Ф = BA (Magnetic flux Ф, Area 𝐴 perpendicular to 𝐵)
3. Flux linkage = ФN (𝑁 = number of turns)


2.3 Exam Style Questions and Key Points
Magnetic field of Earth is always horizontal unless at the poles.


Why a Hall probe is made from a thin slice of material
• Hall voltage depends on thickness of slice
• thinner slice, larger Hall voltage


Why is it difficult to detect hall voltage in a thin slice of copper:
• (in metal,) n is very large
• (therefore) hall voltage is small


Value of the Hall Voltage:
• Hall voltage depends on angle between field and plane of probe
• Max when field normal to plane of probe


Explain why the r.m.s value of the current in the solenoid is reduced as a result of inserting
an iron core:
• For same current iron core gives larger rate of change of flux linkage (iron core
increase the magnetic field strength -> increases flux density)
• e.m.f induced in solenoid is greater (for same current)
• induced e.m.f. opposes applied e.m.f. so current smaller/acts to reduce current


As the magnet is being moved into the solenoid, thermal energy is transferred in the
resistor. Use laws of electromagnetic induction to explain this thermal energy:
• moving magnet gives rise to/causes/induces e.m.f./current in solenoid/coil
• (induced current) creates field/flux in solenoid that opposes (motion of) magnet
• work is done/energy is needed to move magnet (into solenoid)
• (induced) current gives heating effect (in resistor) which comes from the work done


Two wires are laid side-by-side and carry equal currents I in opposite directions, explain
why the total magnetic flux density due to the current in the wires is negligible:
• magnetic fields are equal in magnitude/strength/flux density
• magnetic fields are opposite in direction
• fields superpose/add/cancel to give zero/negligible resultant field


Why magnet falling down through Aluminum takes longer to fall than and plastic tube :
• as magnet falls, tube there is a change in magnetic flux

, • (different rate of change of magnetic flux at different part of tube so there is p.d and)
eddy current induced in aluminum tube but current can’t flow in plastic tube
• eddy current causes heating effect
• heat energy derived from KE of falling magnet
• terminal velocity decreases so longer time in aluminum


Reduction in amplitude of oscillation when a metal block cuts a magnetic field:
• metal block cut magnetic flux at different rate so different induced emf at different
part
• give rise to eddy current which causes heating effect
• heat energy derived from energy of oscillation



3 Circular Motion
3.1 Important Definitions
Radian: angle subtended from centre of a circle where arc length is equal to the radius


3.2 Key Equations:
2𝜋
1. 𝜔 = = 2𝜋𝑓 (Angular Frequency 𝜔)
𝑡
2. 𝑣 = 𝜔𝑟
3. 𝐹 = 𝑚𝜔2 𝑟 (Centripetal Force 𝐹)
4. 𝑎 = 𝜔2 𝑟 (Centripetal Acceleration 𝑎)



3.3 Exam Style Questions and Key Points
Path of the electron in the magnetic field is in the arc of a circle
• (magnetic) force (always) normal to velocity/direction of motion
• (magnitude of magnetic) force constant // speed is constant / kinetic energy is
constant
• magnetic force provides/is the centripetal force
• OR :
• Force due to magnetic field is constant
• Speed of particle is constant
• Force always normal to direction of motion
• Magnetic force provides centripetal force


Speed of particle in arc is not affected by magnetic field :
• Magnetic field always perpendicular to direction of motion
• so there is no work done on the particle
$14.99
Get access to the full document:
Purchased by 9 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing 7 of 16 reviews
2 year ago

terrible

4 year ago

4 year ago

It's very useful. Thank you for making this!

6 year ago

5 year ago

Is there anything I can do to improve the notes? I'll try my best to add them!

6 year ago

6 year ago

Can you please tell me how the notes could be improve so that I can edit it during this summer holiday. Thanks!

6 year ago

6 year ago

6 year ago

I am sorry to see that you didn't like my notes, can you perhaps tell me what you think could be improved so that I can edit it over the summer holiday for the future students who take the exams. Thanks!

4.2

16 reviews

5
9
4
4
3
1
2
1
1
1
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
pete_lohprasert Imperial College London
Follow You need to be logged in order to follow users or courses
Sold
173
Member since
7 year
Number of followers
153
Documents
1
Last sold
1 year ago
A-Level Physics Notes

The notes are 100% accurate as the answers were took from marking schemes. Reading through the notes during revision will give you an idea the sort of question and answers for each topic. The notes are right on the key points, great for last minute cramming / revision. The physics notes are still being regularly updated and is valid for the 2019-2021 syllabus

4.0

63 reviews

5
32
4
18
3
3
2
4
1
6

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions