Reader Producttechnologie, informatietechnologie en natuurkunde
H4
1.1
In de medische wereld zijn er meerdere doeleinden waarbij druk wordt gebruikt om waardes te
meten. Een makkelijk en voor de hand liggend voorbeeld is de bloeddrukmeter om de boven -en
onderdruk van de bloedcirculatie te meten. Een minder voor de hand liggende toepassing is het
lokaliseren van de epidurale ruimte in de ruggenwervel aan de hand van meetbare drukverschillen.
Naast medische apparaten wordt er ook gespeeld met druk binnen in een ziekenhuis. Hierin worden
patiënten met infectiegevaar op een kamer met onderdruk gehouden om zo de kans op verspreiding
te verkleinen.
1.2
Druk treedt altijd op als 2 lichamen (voorwerpen) met elkaar in contact zijn. Er is dan ook altijd
sprake van een actiekracht op het ene lichaam en een reactiekracht op het andere lichaam die via
het contactoppervlak overgedragen worden. Besef hierbij ook dat elk lichaam waar een kracht of
druk op inwerkt ook in enige mate (veel of weinig en dus zichtbaar of niet zichtbaar) vervormt.
Hieruit kunnen we afleiden dat druk dus gedefinieerd worden door 2 factoren: kracht en
contactoppervlak.
𝐹
𝑃 = → hierin is p de druk, F de uitgeoefende kracht en A de oppervlakte. De standaardeenheid
𝐴
daarvan is m² ofwel de vierkante meter. De standaardeenheid voor druk is dus N/m² deze wordt ook
wel de Pa ofwel Pascal genoemd.
1 bar = 100.000 Pa = 105 Pa
De atmosferische druk, zoals wij die kennen op aarde is 1 bar of dus 105 Pa. De atmosferische druk
wordt veroorzaakt door kleine luchtmoleculen die door de zwaartekracht op het aardoppervlak een
kracht uitoefenen.
Deeltjes in een vaste stof kunnen niet van hun plaats bewegen, in een vloeistof wel. In gas zijn
deeltjes voortdurend in beweging.
1.3
Druk is in alle richtingen gelijk. Dat geldt zowel onderwater, als in open lucht.
Op een lichaam dat is ondergedompeld in een vloeistof zullen de vloeistofdeeltjes in alle richtingen
een druk uitoefenen. Anders dan bij een vaste stof is bij een vloeistof de richting van het oppervlak
van het lichaam niet van belang. In een bepaald punt van de vloeistof wordt op elk oppervlak van
gelijke grootte dezelfde kracht uitgeoefend. Dit wordt verwoord in de Wet van Pascal: “Druk,
uitgeoefend op een deel van een vloeistof, plant zich in alle richtingen voort met dezelfde grootte,
anders gezegd de druk is in elk punt gelijk in alle richtingen.
, Figuur 1 druk
De druk in een vloeistof noemen we de hydrostatische druk. De hydrostatische druk is de druk die
ontstaat door het gewicht van de hoeveelheid vloeistof boven het meetpunt2 . Deze druk werkt in
alle richtingen gelijk en wordt ook uitgedrukt in de eenheid Pascal. 1 Pa = 1 N/m2. Je kan de
hydrostatische druk met dezelfde formule berekenen als diegene die gebruikt wordt om de druk bij
vaste stoffen te berekenen→ P=F:A.
𝐹 =𝑚×𝑔
De massa van de vloeistof die zich boven het meetpunt (in feite is dit een oppervlakje) bevindt hangt
af van de dichtheid van de vloeistof boven het meetpunt en het volume van de vloeistof boven het
meetpunt2 . Het volume van een kolom of rechthoekig blok is lengte x breedte x hoogte, dus:
𝑙 ∙ 𝑏 ∙ ℎ = 𝐴 ∙ ℎ
𝐴 = 𝑙 × 𝑏 (lengte keer breedte).
Traditioneel duidt men dichtheid aan met de Griekse letter ρ (rho). De dichtheid staat gelijk aan de
massa gedeeld door het volume:
𝑘𝑔 𝑀 (𝑘𝑔)
ρ = 𝑚3 = 𝑉 (𝑚3) → hierin is m de massa en V het volume.
𝑚 = 𝜌 ∙ 𝑉 = 𝜌 ∙ 𝐴 ∙ ℎ
𝑉 =𝐴×ℎ
𝐹 𝑚×𝑔 𝜌∙𝐴∙ℎ∙𝑔
𝑝 = 𝐴
= 𝐴
= 𝐴
= 𝜌 ∙ ℎ ∙ 𝑔
We kunnen de hydrostatische druk dus eenvoudig berekenen met volgende formule:
𝑝 = 𝜌 ∙ ℎ ∙ 𝑔
Hierin is:
- 𝑝: de hydrostatische druk (Pa).
- 𝜌: de dichtheid van de vloeistof (kg/m³).
- ℎ: de afstand tussen het meetpunt en de oppervlakte van de vloeistof (m).
- 𝑔: de gravitatiekracht (9,81 m/s² ~ 10 m/s²).
Meter waterkolom (ook wel als centimeter waterkolom genoemd, cmH2O) is geen SI eenheid, maar
is wel een belangrijke eenheid die volgt uit de hydrostatische druk. Meter water kolom houdt de
hoeveel meter dat water stijgt in een kolom, als gevolg van een druk (zie figuur 5). Het is een maat
die in ziekenhuizen nog steeds gebruikt wordt bij, bijvoorbeeld, beademingsapparaten. De waarde
voor 1 cmH2O kunnen we met behulp van de hydrostatische druk uitdrukken:
𝑝 = 𝜌 ∙ ℎ ∙ 𝑔
𝑘𝑔 𝑚
1 𝑐𝑚𝐻2 𝑂 (𝑃𝑎) = 1000 𝑚3 × 0,01𝑚 × 9,81 𝑠2 = 98,1 𝑃𝑎𝑠𝑐𝑎𝑙