100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Introduction to Linear Algebra 5th Edition Solution Manual PDF

Rating
-
Sold
-
Pages
187
Uploaded on
07-02-2024
Written in
2023/2024

PDF Solutions Manual for Introduction to Linear Algebra 5th Edition by Gilbert Strang.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Course

Document information

Summarized whole book?
Yes
Uploaded on
February 7, 2024
Number of pages
187
Written in
2023/2024
Type
Summary

Subjects

Content preview

, INTRODUCTION

TO

LINEAR

ALGEBRA

Fifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang
Massachusetts Institute of Technology

math.mit.edu/linearalgebra
web.mit.edu/18.06
video lectures: ocw.mit.edu
math.mit.edu/∼gs
www.wellesleycambridge.com
email:

Wellesley - Cambridge Press

Box 812060
Wellesley, Massachusetts 02482

,2 Solutions to Exercises

Problem Set 1.1, page 8

1 The combinations give (a) a line in R3 (b) a plane in R3 (c) all of R3 .

2 v + w = (2, 3) and v − w = (6, −1) will be the diagonals of the parallelogram with

v and w as two sides going out from (0, 0).

3 This problem gives the diagonals v + w and v − w of the parallelogram and asks for

the sides: The opposite of Problem 2. In this example v = (3, 3) and w = (2, −2).

4 3v + w = (7, 5) and cv + dw = (2c + d, c + 2d).

5 u+v = (−2, 3, 1) and u+v+w = (0, 0, 0) and 2u+2v+w = ( add first answers) =

(−2, 3, 1). The vectors u, v, w are in the same plane because a combination gives
(0, 0, 0). Stated another way: u = −v − w is in the plane of v and w.

6 The components of every cv + dw add to zero because the components of v and of w

add to zero. c = 3 and d = 9 give (3, 3, −6). There is no solution to cv+dw = (3, 3, 6)
because 3 + 3 + 6 is not zero.

7 The nine combinations c(2, 1) + d(0, 1) with c = 0, 1, 2 and d = (0, 1, 2) will lie on a

lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.

8 The other diagonal is v − w (or else w − v). Adding diagonals gives 2v (or 2w).

9 The fourth corner can be (4, 4) or (4, 0) or (−2, 2). Three possible parallelograms!

10 i − j = (1, 1, 0) is in the base (x-y plane). i + j + k = (1, 1, 1) is the opposite corner

from (0, 0, 0). Points in the cube have 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

11 Four more corners (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is ( 21 , 12 , 12 ).

Centers of faces are ( 12 , 21 , 0), ( 12 , 21 , 1) and (0, 12 , 12 ), (1, 21 , 12 ) and ( 12 , 0, 12 ), ( 12 , 1, 12 ).

12 The combinations of i = (1, 0, 0) and i + j = (1, 1, 0) fill the xy plane in xyz space.

13 Sum = zero vector. Sum = −2:00 vector = 8:00 vector. 2:00 is 30◦ from horizontal

= (cos π6 , sin π6 ) = ( 3/2, 1/2).

14 Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors

changes from 0 to 12j = (0, 12).

, Solutions to Exercises 3

3 1
15 The point v + w is three-fourths of the way to v starting from w. The vector
4 4
1 1 1 1
v + w is halfway to u = v + w. The vector v + w is 2u (the far corner of the
4 4 2 2
parallelogram).

16 All combinations with c + d = 1 are on the line that passes through v and w.

The point V = −v + 2w is on that line but it is beyond w.
1
17 All vectors cv + cw are on the line passing through (0, 0) and u = 2v + 12 w. That
line continues out beyond v + w and back beyond (0, 0). With c ≥ 0, half of this line
is removed, leaving a ray that starts at (0, 0).

18 The combinations cv + dw with 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1 fill the parallelogram with

sides v and w. For example, if v = (1, 0) and w = (0, 1) then cv + dw fills the unit
square. But when v = (a, 0) and w = (b, 0) these combinations only fill a segment of
a line.

19 With c ≥ 0 and d ≥ 0 we get the infinite “cone” or “wedge” between v and w. For

example, if v = (1, 0) and w = (0, 1), then the cone is the whole quadrant x ≥ 0, y ≥
0. Question: What if w = −v? The cone opens to a half-space. But the combinations
of v = (1, 0) and w = (−1, 0) only fill a line.
1
20 (a) 3u + 13 v + 31 w is the center of the triangle between u, v and w; 21 u + 12 w lies
between u and w (b) To fill the triangle keep c ≥ 0, d ≥ 0, e ≥ 0, and c + d + e = 1.

21 The sum is (v − u) + (w − v) + (u − w) = zero vector. Those three sides of a triangle

are in the same plane!

22 The vector 12 (u + v + w) is outside the pyramid because c + d + e = 1
2
+ 1
2
+ 1
2
> 1.

23 All vectors are combinations of u, v, w as drawn (not in the same plane). Start by

seeing that cu + dv fills a plane, then adding ew fills all of R3 .

24 The combinations of u and v fill one plane. The combinations of v and w fill another

plane. Those planes meet in a line: only the vectors cv are in both planes.

25 (a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose
u and v in different directions. A combination like w = u + v is in the same plane.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
SolutionsWizard Universidad de San Andres
Follow You need to be logged in order to follow users or courses
Sold
506
Member since
7 year
Number of followers
141
Documents
50
Last sold
3 days ago
The #1 Shop for Solutions Manual

Book Solutions Manuals, summaries for the IGCSEs, IB and general Finance / Business notes. I’m not responsible for whatever you might use my documents for, this is intended only for educational purposes.

4.1

75 reviews

5
43
4
14
3
7
2
2
1
9

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions