TO
LINEAR
ALGEBRA
Fifth Edition
MANUAL FOR INSTRUCTORS
Gilbert Strang
Massachusetts Institute of Technology
math.mit.edu/linearalgebra
web.mit.edu/18.06
video lectures: ocw.mit.edu
math.mit.edu/∼gs
www.wellesleycambridge.com
email:
Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482
,2 Solutions to Exercises
Problem Set 1.1, page 8
1 The combinations give (a) a line in R3 (b) a plane in R3 (c) all of R3 .
2 v + w = (2, 3) and v − w = (6, −1) will be the diagonals of the parallelogram with
v and w as two sides going out from (0, 0).
3 This problem gives the diagonals v + w and v − w of the parallelogram and asks for
the sides: The opposite of Problem 2. In this example v = (3, 3) and w = (2, −2).
4 3v + w = (7, 5) and cv + dw = (2c + d, c + 2d).
5 u+v = (−2, 3, 1) and u+v+w = (0, 0, 0) and 2u+2v+w = ( add first answers) =
(−2, 3, 1). The vectors u, v, w are in the same plane because a combination gives
(0, 0, 0). Stated another way: u = −v − w is in the plane of v and w.
6 The components of every cv + dw add to zero because the components of v and of w
add to zero. c = 3 and d = 9 give (3, 3, −6). There is no solution to cv+dw = (3, 3, 6)
because 3 + 3 + 6 is not zero.
7 The nine combinations c(2, 1) + d(0, 1) with c = 0, 1, 2 and d = (0, 1, 2) will lie on a
lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.
8 The other diagonal is v − w (or else w − v). Adding diagonals gives 2v (or 2w).
9 The fourth corner can be (4, 4) or (4, 0) or (−2, 2). Three possible parallelograms!
10 i − j = (1, 1, 0) is in the base (x-y plane). i + j + k = (1, 1, 1) is the opposite corner
from (0, 0, 0). Points in the cube have 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.
11 Four more corners (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is ( 21 , 12 , 12 ).
Centers of faces are ( 12 , 21 , 0), ( 12 , 21 , 1) and (0, 12 , 12 ), (1, 21 , 12 ) and ( 12 , 0, 12 ), ( 12 , 1, 12 ).
12 The combinations of i = (1, 0, 0) and i + j = (1, 1, 0) fill the xy plane in xyz space.
13 Sum = zero vector. Sum = −2:00 vector = 8:00 vector. 2:00 is 30◦ from horizontal
√
= (cos π6 , sin π6 ) = ( 3/2, 1/2).
14 Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors
changes from 0 to 12j = (0, 12).
, Solutions to Exercises 3
3 1
15 The point v + w is three-fourths of the way to v starting from w. The vector
4 4
1 1 1 1
v + w is halfway to u = v + w. The vector v + w is 2u (the far corner of the
4 4 2 2
parallelogram).
16 All combinations with c + d = 1 are on the line that passes through v and w.
The point V = −v + 2w is on that line but it is beyond w.
1
17 All vectors cv + cw are on the line passing through (0, 0) and u = 2v + 12 w. That
line continues out beyond v + w and back beyond (0, 0). With c ≥ 0, half of this line
is removed, leaving a ray that starts at (0, 0).
18 The combinations cv + dw with 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1 fill the parallelogram with
sides v and w. For example, if v = (1, 0) and w = (0, 1) then cv + dw fills the unit
square. But when v = (a, 0) and w = (b, 0) these combinations only fill a segment of
a line.
19 With c ≥ 0 and d ≥ 0 we get the infinite “cone” or “wedge” between v and w. For
example, if v = (1, 0) and w = (0, 1), then the cone is the whole quadrant x ≥ 0, y ≥
0. Question: What if w = −v? The cone opens to a half-space. But the combinations
of v = (1, 0) and w = (−1, 0) only fill a line.
1
20 (a) 3u + 13 v + 31 w is the center of the triangle between u, v and w; 21 u + 12 w lies
between u and w (b) To fill the triangle keep c ≥ 0, d ≥ 0, e ≥ 0, and c + d + e = 1.
21 The sum is (v − u) + (w − v) + (u − w) = zero vector. Those three sides of a triangle
are in the same plane!
22 The vector 12 (u + v + w) is outside the pyramid because c + d + e = 1
2
+ 1
2
+ 1
2
> 1.
23 All vectors are combinations of u, v, w as drawn (not in the same plane). Start by
seeing that cu + dv fills a plane, then adding ew fills all of R3 .
24 The combinations of u and v fill one plane. The combinations of v and w fill another
plane. Those planes meet in a line: only the vectors cv are in both planes.
25 (a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose
u and v in different directions. A combination like w = u + v is in the same plane.