100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Zelfstudie media en digitale samenleving

Beoordeling
-
Verkocht
1
Pagina's
35
Geüpload op
04-02-2024
Geschreven in
2023/2024

In dit document is alles van de zelfstudies samengevat + de laatste les (cybercrime). Hiermee kan je de vragen van de tussentijdse testjes zo oplossen. 18/20 mee gehaald.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
4 februari 2024
Aantal pagina's
35
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Universiteit Antwerpen 3de bachelor keuzevak



Media
samenvatting alle
zelfstudie + laatste
les




Chiana Cappelle

,INHOUD
Zelfsstudie AI .................................................................................................................................... 2
Video 1 .......................................................................................................................................... 2
Tekst 1: LLM ................................................................................................................................... 3
Tekst 2: ethiek ................................................................................................................................ 7
Zelfstudie desinformatie Media......................................................................................................... 9
Filmpje 1 ........................................................................................................................................ 9
Filmpje 2 ....................................................................................................................................... 10
Samenvatting tekst conspiracy theorie ........................................................................................ 11
Zelfstudie media online haat ............................................................................................................ 14
Podcast ........................................................................................................................................ 14
De klas radicaliseert...................................................................................................................... 16
Online hate speech ....................................................................................................................... 17
Introductie in cybercrime .................................................................................................................24
Cybercrime as a service (CAAS) ....................................................................................................24
Cybercrime fundamentals ................................................................................................................24
Malware .......................................................................................................................................24
Hacking ........................................................................................................................................25
Phishing........................................................................................................................................25
Phishing panels ........................................................................................................................ 26
Helpdeskfraude ....................................................................................................................... 26
Ransomware ................................................................................................................................ 27
Ransomware trends .................................................................................................................. 27
Impact ......................................................................................................................................28
Digitale bewijsvoering en onderzoek ................................................................................................28
Wetgeving → examen!! .................................................................................................................... 30
Ontwikkelingen en trends ................................................................................................................ 30
Veilig online...................................................................................................................................... 33




1

,ZELFSSTUDIE AI

VIDEO 1

Gezichtsherkenning software:

Werkt goed bij mannen met een witte huidskleur en het slechtste bij vrouwen met een donkere huidskleur.

Gaat ook vaak mis bij haar van afro-Amerikaanse dames.

Waarom? Gezichtsherkenning gemaakt door grote hoeveelheid data in te voeren, zo gaat de computer leren
om gezichten te herkennen. De datasets bevatten vnl voorbeelden dan mannen met een witte huidskleur
(komen vaker voor in de media) → vervelend want mensen kunnen minder goed hun telefoon ontgrendelen,
maar politie gebruikt zo een software om criminelen op te sporen op straat → niet eerlijk! Vaker ten onrechte
donkere mensen eruitgehaald.

Mensen hebben bepaalde vooroordelen, soms hierdoor laten leiden. Kan soms zorgen voor discriminatie! Zo
naar AI kijken dan kunnen we menselijke vooroordelen ontwijken, maar AI is dus ook niet altijd objectief!

Gevolg van:

• Manier waarop het algoritme gebouwd is of de data erin niet representatief genoeg is.
• Proxy: (bv bij bank kijken naar kredietwaardigheid) zaken zoals geslacht en ras mag niet in acht worden
genomen! Dat is een verbod! Geen rekening houden bv met geslacht, maar wel gegevens die nauw
samen hangen met het geslacht (bv welk dat je koopt) → dit zijn proxy’s en zo nog wel discriminatie!
(of bv een postcode).
• Aangeleerde discriminatie:
Bv Tay : chatbox, na paar dage heftige taal en politieke statements te maken → liep fout bij contact
met gebruikers die hem dat taalgebruik aanleren.
• Vertekening in AI omdat samenleving vertekend is: bv zoeksuggesties in google!

Systemen vaak niet transparant, AI gebaseerd op deep learning (grote hoeveelheden data waar het systeem
dan conclusies uit gaat trekken → wordt ook wel black box genoemd!) black box: men weet niet op welke criteria
de AI een beslissing nam (dus zo ook niet nagaan hoe discriminatie hierin kruipt). Cv laten uitlezen door AI, maar
AI is sterk om patronen/ eigenschappen ontdekken in grote hoeveelheden data → dus succesvolle Cv van
anderen invoegen en obv die ze laten zoeken. Als die dataset enkel mannen bevat, dan is er veel kans dat het
model rekening houdt met eigenschappen die samenhangen met mannelijk geslacht!

Oplossingen:

• Zorgen dat de data dat men in de machine zet voldoende representatief is.
• Testen op voorhand (door te vergelijken van resultaten tussen verschillende groepen)
• Diversheid van het ontwikkelingsteam!
• Feedback vragen aan gebruikers
• Regels opstellen (op europees niveau al opgericht voor AI systemen en huidige wetten misschien
aanpassen?).
• Mens verantwoordelijkheid, voor als het misloopt.

Zijn een reflectie van de eigen samenleving!




2

, TEKST 1: LLM

LLM= Large language Model (natuurlijke taalverwerving)

Definitie: Grote taalmodellen, AI systemen → gebouwd mbv diepgaand leren technieken (= neurale netwerken
→ hiermee kunnen ze grote hoeveelheden gegevens verwerken). Is een soort patroonherkenningsmachine!

Belang en toepassing:

• Natuurlijke taalverwerking → NLP taken aanzienlijk verbeteren.
• ontext begrijpen en contextueel relevante teksten generaliseren.
• Mogelijkheden voor chatsbots en hulpmiddelen voor het genereren van inhoud?
o Tekstgeneratie en aanvulling: LLM kunnen coherente en contextueel relevante teksten
genereren obv bepaalde prompt.
o Machinevertaling: taalbarrières in de communicatie worden weggenomen
o Sentimentanalyse: feedback en beoordelingen van klanten analyseren → klantenservice
verbeteren
o Vraag-antwoord systemen: vragen begrijpen en beantwoorden
o Chatsbots en gespreksagenten: mensachtig → klantenervaringen verbeteren

Korte geschiedenis:

Introductie van natuurlijke taal machine learning was in 2017. → transformer architectuur: legde de basis voor
LLM → modellen effectiever complexe taalpatronen begrijpen.

Sleutelconcepten:

• Natural language processing: deelgebeid van AI, richt zich op de ontwikkeling van algoritmen en
modellen die menselijke taal kunnen begrijpen, interpreteren en genereren. → kloof tussen menselijke
communicatie en computerbegrip overbruggen.
• Neurale netwerken en diep leren: neurale netweken (obv menselijk brein) → via lagen (neuronen geven
info aan elkaar door). → complexe patronen en representaties leren!
diep leren= voorbeeld van machine learning dat zich richt op het gebruik van diepe neurale netwerken
(DNN)
• Overdracht van leren: sleutelconcept → trainen van het model op een grote dataset (diverse en
uitgebreide tekstgegevens) → kennis die tijdens pretrainen is opgedaan te gebruiken!
• Transformator architectuur: convolutioneel neuraal netwerk → zelfaandachtsysteem: LLM kunnen
invoerreeksen parallel verwerken = snellere efficiënte training!

Verschillende varianten:

• GPT (open AI) van 1-4 (eerste was in 2018) = generative pre-trained transformer
• BERT (Google) = bidirectional encoder representations from transformers → context goed begrijpen
en relaties tussen woorden effectiever vastleggen
• T5 (Google Brain)= tekst-to-tekst transfer transformer → tekst naar tekstproblemen, model
nauwkeurig afgestemd op breed scale aan taken?
Belangrijke rol gehad in onderzoek naar transferleren en leren met meerdere taken.




3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
chianacappelle Universiteit Antwerpen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
28
Lid sinds
1 jaar
Aantal volgers
6
Documenten
7
Laatst verkocht
1 week geleden

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen