100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Summary Brock Biology of Microorganisms, Global Edition - Microbiology (AB_1276) (2,3)

Rating
-
Sold
-
Pages
32
Uploaded on
04-02-2024
Written in
2023/2024

Summary Brock Biology of Microorganisms Chapter: 2, 3 (3.1, 3.5-3.10

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
2, 3 (3.1, 3.5-3.10)
Uploaded on
February 4, 2024
Number of pages
32
Written in
2023/2024
Type
Summary

Subjects

Content preview

2, 3 (3.1, 3.5-3.10)

17 jan 2024 Lecture 6 (Chapter 2)

2.1 The Cytoplasmic Membrane
Layered structures surrounding cytoplasm:
- cytoplasmic membrane
- cell wall
- outer membrane
- S-layers

Cytoplasmic Membrane / Plasma Membrane
= surrounds cytoplasm (mixture of macromolecules and small molecules)
- separates it from environment
- main function: selective permeability (nutrient transport in and waste out)
→ membrane proteins facilitate these reactions and function in energy metabolism

Bac + Euk Cytoplasmic Membranes
- 8-10 nm wide
- general structure is phospholipid bilayer containing
embedded proteins
- Containing both hydrophilic (water-attracting) and
hydrophobic (water-repellent) components
→ hydrophobic = fatty acids (tails)
→ hydrophilic = glycerol + phosphate + another
functional group (sugars e.g.)

Membrane proteins
- embedded proteins = integral membrane proteins
- transmembrane proteins = extend completely across
membrane
- peripheral membrane proteins = loosely attached

Archaea Cytoplasmic Membrane
- structure is similar to bac + euk, but it is chemically different
- In bac/Euk → FA are bound to glycerol via ester linkages
In Archaea → Isoprenoids (ipv FA) are bound to glycerol via ether linkages
→ many different isoprenoid chains including some ring structures (e.g.
crenarchaeol)
- Major lipids are phosphoglycerol diethers with phytanyl (C20) side chains +
diphosphoglycerol tetraethers with biphytanyl (C40) side chains → which can form
lipid monolayers (fig c) ipv bilayer

monolayer → isoprenoids are linked

,Cytoplasmic Membrane Function:
1. Permeability barrier
- polar and charged molecules must be transported
- transport proteins accumulate solutes against the concentration gradient
- prevent leakage
2. Protein anchor
- holds proteins in place
3. Energy conservation and consumption
- generation of proton motive force (potential energy present)




Membrane transport:

solute = particle




2.2 Transporting nutrients into the cell
Active transport = how cells accumulate solutes against concentration gradient

Transporters
= energy-driven (proton motive force, ATP, or another
energy rich compound)
3 mechanisms
- simple transport = transmembrane transport
protein
→ driven by pmf , noATP
→ Symport (one direction) or Antiport (2 solutes
transported in opposite direction)
- group translocation = series of proteins
→ substance transported is chemically modified
→ energy rich organic compound (not pmf) drives transport
- ABC system = 3 components (binding protein, transmembrane transporter,
ATP-hydrolyzing protein)

,Group translocation
● Phosphotransferase system in E coli
- best studied translocation system
- glucose, fructose, mannose
- 5 proteins required
- energy from phosphoenolpyruvate (from glycolysis)

ABC-transporter systems
- ABC = ATP-binding cassette
- 200+ different systems for organic and inorganic compounds
- substrate -binding proteins outside of the cell have high substrate affinity
- ATP drives uptake



2.3 The Cell Wall
● Needs to withstand osmotic/turgor pressure to prevent cell lysis
● Maintains cell shape and rigidity
● Most Bacteria separated into 2 groups based on gram-stain (organization and cell
wall structures

Gram-stain
● gram-positive and gram-negatives have different cell wall structures
- gram positive cell envelope
→ cytoplasmic membrane + thick cell wall
- gram negative cell envelope
→ cytoplasmic membrane + thin cell wall + outer membrane + periplasm
● gram stain reaction determined by cell wall thickness




Bacterial cell wall
- Peptidoglycan = rigid polysaccharide layer that provides strength (component of cell
wall)
→ not found in archaea and eukaryotic cells
- Glycan tetrapeptide (peptidoglycan) contains:

, - Sugar backbone of peptidoglycan is composed of alternating
repeats of two modified glucose residues called
N-acetylglucosamine and N-acetylmuramic acid joined by a b-1,4
linkage
- Short peptide attached to N-acetylmuramic acid
→ amino acids vary between species
→ Amino acids are: L-alanine, D-alanine, D-glutamic acid and
L-lysine of diaminopimelic acid (DAP)




● Peptidoglycan strands run parallel around cell circumference (pic)
● strands are cross-linked by covalent peptide bonds (a)
- becomes one big molecule
● gram-negative crosslinks between DAP amino and D-alanine
carboxyl on adjacent glycan strand
- primarily single layer
● peptidoglycan mesh formed is flexible and porous → but strong
enough to resist turgor pressure and prevent rupture
- additional strength in gram negative → provided by outer
membrane

Gram-positive cell envelope
- Thick peptidoglycan cell wall (20-35 nm)
- Up to 90% peptidoglycan (15> layers)
- stabilized by horizontal and vertical peptide cross-links often
containing peptide interbridges
- Commonly have teichoic acids (acidic molecules) embedded in cell wall and
covalently linked to peptidoglycan
→ lipoteichoic acids: teichoic acids covalently bound to membrane lipids
- Peptidoglycan can be destroyed by lysozyme ⇒ cleaves
glycosidic bond between sugars
→ major defense against bacterial infection
- Penicillin blocks formation of peptide cross-links
- ⇒ picture ⇒




Archaea walls
- Cytoplasmic membrane different from Bac
- Lack peptidoglycan
- typically lack outer membrane → gram staining does not work
- most lack polysaccharide wall ⇒ instead they have S-layer
(protein shell) → prevents osmotic lysis


● Cell walls have unique chemical structures (not found in Bac)
$8.24
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
kayvolders

Also available in package deal

Get to know the seller

Seller avatar
kayvolders Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
5
Member since
1 year
Number of followers
0
Documents
5
Last sold
7 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions