100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary [MSc AP] Formula Sheet Finite Elements

Rating
-
Sold
-
Pages
1
Uploaded on
23-01-2024
Written in
2023/2024

--- Satisfied? Please don't forget to leave a rating! --- This formula sheet covers the essentials of the 1st year's Applied Physics course "AP3001-FE - Finite Elements". This is kept to one page only, so it can be brought to the final exam (this is allowed at the time of writing this).

Show more Read less
Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Yes
Uploaded on
January 23, 2024
File latest updated on
January 23, 2024
Number of pages
1
Written in
2023/2024
Type
Summary

Subjects

Content preview

Finite Element Analysis Formula Sheet by Ruben Tol
Minimization Problems Construct the approximate functional, Galerkin Method
compute the stationary point condition
u = arg min J(v) Derive the Weak Form of the PDE
v∈Σ Use the form of J(u) with the small-
Reduce the amount of derivatives
est order derivatives (original equation
Derive Euler-Lagrange Equations present as much as possible using IBP.
or Euler-Lagrange equation), and sum
Then, the weak form is given by
Identify Solution Space and Boundaries over all j’s for which ui is unknown: Z Z
Σg := {u ∈ C n (Ω) : u|δΩ = g} ∂J ˜ G(u)η dΩ = f η dΩ ∀η ∈ V0 ,
˜
J(u) := J(ũ), = 0, j = 0, . . . , m−1 Ω Ω
g(x) a function, g a variable, or just 0. ∂uj
V0 := {η ∈ C s (Ω) : η|δΩ = 0}.
Identify Test Function Useful identities:
Galerkin Equations
n
η ∈ Σ0 := {η ∈ C (Ω) : η|δΩ = 0} ∂ ∂
∇ũ = ∇φj , ũ = φj . Perform the Ritz method on the weak
Notation implies what holds for u holds ∂uj ∂uj form of the PDE to obtain the Galerkin
for η, now with η|δΩ = 0. equations.
Move any summation signs outside the
Perform Variational Analysis integral signs, move any boundary con-
ditions to the right-hand side, and inter- Non-Linear Problems
d
J(u + ϵη) = 0, ∀η ∈ Σ0 change η = φj if needed: {xk }∞
dϵ ϵ=0 k=0 , lim xk = x
k→∞
n−1
For multivariable functions: X Z Z
Brouwer Fixed Point Theorem
d ∂F ∂a ∂F ∂b ui G(φi , φj ) dΩ = f φj dΩ,
F (a(ϵ), b(ϵ)) = + i=0 Ω Ω Given g(x) ∈ C(I), ∀x ∈ Ω, with I
dϵ ∂a ∂ϵ ∂b ∂ϵ a compact and convex domain (so I is
j = 0, . . . , m − 1.
Obtain Euler-Lagrange Equations closed and bounded), then x has at least
one fixed point in Ω.
Z
Express in matrix form Lu = f, with:
G(u)η dΩ = 0, ∀η ∈ Σ0
Ω Z
L = G(φi , φj ) dΩ, Banach Fixed Point Theorem
Use integration by parts (IBP): ij
Z Z I Ω If a contraction mapping g(x) : I → I
u·∇v dΩ = − ∇u·v dΩ+ uv·n dΓ. u = (u0 , . . . , un−1 )T , for γ ∈ [0, 1] such that
Ω Ω δΩ=Γ
Z
Dubois-Reymond theorem then tells us: fj = f φj dΩ. d(g(x), g(y)) ≤ γ d(x, y) , ∀x, y ∈ I

→ |g(x) − g(y)| ≤ γ|y − x|, ∀x, y ∈ I
Z I
f (x)η dΩ + h(x)η dΓ = 0,
Ω Γ PDE to Minimization Problem
exists, then the fixed point x is the only
→ f (x) = 0 on Ω ∨ h(x) = 0 on Γ, Check Differential Operator fixed point in I.
with boundary conditions (BC’s) First, identify the solution space and
u|δΩ = g(x). boundaries. Then, define the differ- Picard Method
ential operator L and prove its lin-
If Brouwer’s and Banach’s fixed point
Ritz Method earity, self-adjointness and positive-
theorems hold, then the Picard iteraton
definiteness for homogeneous boundary
Define a discrete space Σ̃ for approxi- conditions u, v ∈ Σ0 : xk+1 = g(xk ), k = 0, 1, . . .
mate solution ũ
L(αu + βv) = αLu + βL + v,
V := C s → Ṽn := span{φi }n−1 i=0 ⊂ V, Z Z converges to the fixed point x for all ini-
u(Lv) dΩ = (Lu)v dΩ, tial guesses x0 ∈ I.
with smallest s so C is smooth enough,
Ω Ω
depending on the order of derivatives in Z Z
Newton Method
the Euler-Lagrange equations. uLu dΩ ≥ γ u2 dΩ, γ > 0.
Ω Ω
Write any element of Ṽ n as linear com- If Brouwer’s and Banach’s fixed point
2 df
binations of the basis: To prove self-adjointness, use IBP; to theorems hold, f (x) ∈ C (I), dx > 0
n−1
X prove positive-definiteness, use homoge- (Jf invertible), then f (x) = 0 is approx-
ũ = ui φi ∈ Ṽ n . neous boundary conditions. imated for x by any initial guess x0 ∈ I
i=0
Then, for any homogeneous PDE (Σ0 ) by using Newton-Rapshon’s method:
Prescribe essential boundary conditions of the form Lu = f , u is given by solv-
on ũ according to any boundaries B: xk+1 = xk − (Jf (xk ))−1 f(xk ),
ing the minimization problem for
u|δΩ = g(x), Ṽ = Ṽ0 ⊕ B, Z
1 where f(xk ) = (f (x1 ), . . . , f (xn ))T , and
m−1 n−1 J(u) = uLu − f u dΩ,
Ω 2
X X  ∂f1 ∂f1 
→ ũ = ui φi + g(xi )φi ∈ Ṽ n . ∂x1 . . . ∂x n
i=0 i=m and for any non-homogeneous PDE (Σg ) Jf =  ... .. ..  .

. . 
Essential BC’s (u|δΩ = g(x)), explicitly Z ∂f n ∂f
. . . ∂xnn
need their own series to be solved; nat- 1 ∂x1
J(u) = (u − v)L(u + v) − f u dΩ.
ural BC’s (∇u · n|δΩ = h(x)) are ”natu- Ω 2
rally” satisfied and grouped with u ∈ Ω.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
rhjatol Technische Universiteit Delft
Follow You need to be logged in order to follow users or courses
Sold
67
Member since
5 year
Number of followers
48
Documents
10
Last sold
4 months ago

4.4

7 reviews

5
4
4
2
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions