100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Difference- & Differential Equations for EOR (RUG)

Rating
-
Sold
-
Pages
45
Uploaded on
14-01-2024
Written in
2023/2024

Summary for the course Difference- & Differential Equation for the bachelor programme Econometrics & Operations Research containing all important concepts discussed in the lectures. Lecture slides made by A. van der Made. 2nd year course taught by D. Vullings.

Show more Read less
Institution
Module











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Module

Document information

Summarized whole book?
Yes
Uploaded on
January 14, 2024
Number of pages
45
Written in
2023/2024
Type
Summary

Subjects

Content preview

Difference- & Differential Equations
Summary
EBB812A05
Semester I B


Wouter Voskuilen
S4916344


Contents
1 Week 1 2
1.1 Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Lecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Week 2 10
2.1 Lecture 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Lecture 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Week 3 18
3.1 Lecture 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Lecture 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Week 4 25
4.1 Lecture 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Lecture 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Week 5 31
5.1 Lecture 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Lecture 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Week 6 40
6.1 Lecture 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Lecture 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Week 7 44
7.1 Lecture 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44




1

,Wouter Voskuilen Difference- & Differential Equations


1 Week 1
1.1 Lecture 1
A first order differential equation (first order ODE) is an equation of the form
F (t, x(t), x′ (t)) = 0, t∈T, (1)
where F is a function of (at most) 3 variables and T ⊆ R is connected.

NB: we confine attention to the ODEs that can be written as a recurrence relation:
x′ (t) = H(t, x(t)), t∈T,
for some function H.

Some important concepts:
− Ordinary: the function x is only differentiated with respect to one variable. This
variable is often time and denoted t.
− A first-order ODE that does not depend on t explicitly, i.e. that can be written as
F (x(t), x′ (t)) = 0, is called autonomous.
− If (y, z) 7→ F (t, y, z) is affine for all t ∈ T , then (1) is linear.
− A solution of the ODE (1) is a differentiable function x : T → C that satisfies (1).
− The general solution of (1) is the set containing all solutions of (1). So, an element of
the general solution is a function.
− An ODE like (1) together with an initial condition x(t0 ) = x0 is called an initial value
problem. A solution of the ODE that also satisfies the initial condition is a solution of
the initial value problem.
Let f and g be continuous functions. Four types of first order ODEs for which a general
method can be used to find solutions are:
1) x′ (t) = g(t) (type I ODE)
2) x′ (t) = f (t)g(x(t)) (seperable ODE)
3) x′ (t) = f (t)x(t) (homogeneous linear ODE)
4) x′ (t) = f (t)x(t) + g(t), g ̸≡ 0 (inhomogenous linear ODE)
NB: The symbol ≡ is used for constant functions, i.e. functions that attain only one value
over their entire domain.




2

,Wouter Voskuilen Difference- & Differential Equations


Solutions of Type I ODEs
Consider an ODE of the following form:
x′ (t) = g(t), t∈T.
Solutions of this type can be found by integrating both sides:
Z t Z t Z t

x(t) − x(t0 ) = x (s)ds = g(s) ⇒ x(t) = g(s)ds + x(t0 ).
t0 t0 t0

So, the general solution of a type I equation reads
Z t
x(t) = g(s)ds + c, t ∈ T , c ∈ C.
t0


Solutions of Seperable ODEs
Consider an ODE of the following form:
x′ (t) = f (t)g(x(t)), t∈T.
Suppose g(x) ̸= 0 for all x. The ODE can then be written as follows:
x′ (t)
= f (t), t∈T.
g(x(t))
Suppose we can find a primitive P of 1/g and a primitive F of f . Then by the Chain Rule:
Z t ′ Z t
x (t)
ds = P (x(t)) − P (x(t0 )) = f (s)ds = F (t) − F (t0 ).
t0 g(x(t)) t0

yielding the implicit general solution
P (x(t)) = F (t) + c, t∈T, c ∈ C.

Solutions of Homogeneous Linear ODEs
Consider an ODE of the following form:
x′ (t) = f (t)x(t), t∈T
Because this ODE is a special case of a seperable equation (with g : x 7→ x), we can again
apply the method of seperation of variables:
Z t ′ Z t
x (s)
ds = f (s)ds ⇒ log|x(t)| = F (t) + c, c ∈ R,
t0 x(s) t0

where F is a primitive of f .
So, |x(t)| = eF (t)+c and the general solution is consequently
x(t) = DeF (t) , t∈T, D ∈ R.

3

, Wouter Voskuilen Difference- & Differential Equations


The General Solution of Inhomogeneous Linear ODEs
Consider an ODE of the form

x′ (t) = f (t)x(t) + g(t), t∈T, (2)

with g ̸≡ 0.

To find solutions of this ODE we use the following result:

Theorem:
Let x∗ be a particular solution of (2). Then every solution of (2) can be written as the
sum of x∗ and a solution of the homogeneous equation x′ (t) = f (t)x(t). Conversely, any
function that can be written as the sum of x∗ and a solution of x′ (t) = f (t)x(t) is a solution
of (2). The proof is as follows:

• Suppose x1 is a solution of (2). Then:

(x1 − x∗ )′ = x′1 − x∗′ = (f x1 + g) − (f x∗ + g) = f (x1 − x∗ ).

So, x1 − x∗ is a solution of the homogeneous equation x′ = f x. The first claim now
follows by noting that x1 = x∗ + (x1 − x∗ ).

• Let y be a solution of the homogeneous equation x′ = f x. Then:

(x∗ + y)′ = x∗′ + y ′ = (f x∗ + g) + f y = f (x∗ + y) + g.

We conclude that x∗ + y is a solution of (2).

Example
Consider the following ODE:
2 +t
x′ (t) = 2tx(t) + et , t ∈ R.

We first determine the general solution of x′ (t) = 2tx(t):

x′ (t) 2
= 2t ⇒ log|x(t)| = t2 + c̃, c̃ ∈ R ⇒ x(t) = cet , c ∈ R.
x(t)
2 +t
Next, we ”figure out” that x∗ (t) = et is a particular solution of the inhomogeneous ODE.
So, the general solution reads:
2 2 +t
x(t) = cet + et , t ∈ R, c ∈ R.




4
$14.32
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
woutervoskuilen

Get to know the seller

Seller avatar
woutervoskuilen Rijksuniversiteit Groningen
Follow You need to be logged in order to follow users or courses
Sold
2
Member since
2 year
Number of followers
2
Documents
8
Last sold
2 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions