100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Full summary MMSR 2023/2024

Puntuación
-
Vendido
7
Páginas
45
Subido en
09-01-2024
Escrito en
2023/2024

This document is a full summary for the exam Methodology in Marketing and Strategic Management Research (MMSR) at Radboud University. I made this summary from lectures + video clips + article by Henseler + book by Hair. The summary is made in study year 2023/2024.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
Subido en
9 de enero de 2024
Número de páginas
45
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Summary MMSR 2023/2024




Introduction.................................................................................................................................................. 2
Lecture 1 – introduction.......................................................................................................................................2
Overview of multivariate methods.......................................................................................................................4
Examining the data..............................................................................................................................................6
..............................................................................................................................................................................9

Factor analysis............................................................................................................................................. 10
Introduction........................................................................................................................................................10
Exploratory factor analysis.................................................................................................................................11
Confirmatory factor analysis..............................................................................................................................16

Ancova........................................................................................................................................................ 18
Introduction........................................................................................................................................................18
Statistics in An(c)ova..........................................................................................................................................18
Assumptions of Anova........................................................................................................................................19
Interpretation of Anova......................................................................................................................................20
One-way Anova..................................................................................................................................................21
N-way Anova......................................................................................................................................................23
Ancova................................................................................................................................................................25
Repeated-measures anova.................................................................................................................................26
Man(c)ova..........................................................................................................................................................27

Regression analysis...................................................................................................................................... 29
Introduction........................................................................................................................................................29
Multiple regression analysis...............................................................................................................................31
Moderator..........................................................................................................................................................36
Logistic regression..............................................................................................................................................37

PLS-SEM....................................................................................................................................................... 39
Introduction........................................................................................................................................................39
Moderation/mediation......................................................................................................................................40
PLS-SEM..............................................................................................................................................................41




1

, Introduction
Lecture 1 – introduction

Definitions
Hypothesis consists of two parts: the independent variable (condition) that is not influenced by
anything else within the model, and the dependent variable (consequence) that is always
impacted by at least one other variable in the model.

Construct = phenomenon of theoretical interest. Needs to be defined in terms of their object
(what are we measuring), attribute level and the unit of analysis.

Theories = consist of several constructs.

Latent = indirectly observable construct. Examples: beliefs, intention, motivation.

Relationships between constructs
Direct causal relationship = A  B
Can be linear  one goes up, the other goes up.
Can be non-linear  one goes up, the other goes down.
A = exogenous variable = independent variable.
B = endogenous variable = dependent variable.

Mediated causal relationship = A  Z  B
Z is the mediator, A influences B through Z.
Full mediation = effect of A on B is completely absorbed by Z.
Partial mediation = effect of A on B is only partly absorbed by Z.
A = exogenous variable = independent variable
B and Z = endogenous variable = dependent variable.

Moderated causal relationship.
Strength/direction of A on B depends on moderator M.

M


A B
A
Spurious relationship
Z influences A and B. Z
B
Bidirectional causal relationship
AB
AB
A leads to B, and B leads to A. Not necessarily at the same time. Often cross sectional data,
difficult from data point of view.

2

,Unanalyzed relationship
There is a correlation between A and B, but it’s not part of your model so you don’t analyze it.

Two-language concept
Language 1: theoretical language, translates in theoretical variables. Denoted with Greek letters.
Language 2: observational language, translates in observable variables. Denoted with our
alphabet.
The correspondence rules are how is corresponded between the languages.




Definition in model:
- Squares = indicators
- Circles/ovals = latent variables
- Small circle with e = (structural) error
term

Measurement model = how good do the
measures perform to predict the latent
construct.




Structural model = relationship of the
path between the constructs.




3

, Reflective versus formative measurement


Reflective (latent) = causality is from construct to the indicator
(measure). The construct is reflected by the measurement.
The indicators are expected to be correlated, and dropping one
indicator doesn’t alter the meaning of the construct.
Measurement error is taken into account at the item level.
This is similar to factor analysis.
Example: consumer research.




Formative (emerging) = causality is from indicator (measure) to the
construct. The indicators aren’t expected to be correlated. Dropping
one indicator can alter the meaning of the construct.




Within this course we mostly use
reflective measurement models, the
validity of the items is then usually
tested with a factor analysis.




Overview of multivariate methods
Multivariate analysis = all statistical techniques that simultaneously analyze multiple
measurements on individuals or objects under investigation.

Basic concepts
Variate = linear combination of variables with empirically determined weights, the building block
of multivariate analysis.

4
$8.74
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Florine98 Radboud Universiteit Nijmegen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
58
Miembro desde
8 año
Número de seguidores
37
Documentos
11
Última venta
8 meses hace

4.0

6 reseñas

5
3
4
2
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes