100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Zusammenfassung Theoretische Physik 2 (Elektrodynamik) - Formelzettel/CheatSheet

Beoordeling
-
Verkocht
-
Pagina's
3
Geüpload op
03-01-2024
Geschreven in
2020/2021

All umfassende Formelsammlung (Cheat Sheet) auf zwei kompakten Seiten perfekt für die Prüfung in Theoretische Physik 2 (Elektrodynamik) im 3. Bachelorsemester Physik an der TUM. Die behandelten Themengebiete sind: Elektrostatik, Magnetostatik, Dipolstrahlung, Elektromagnetische Wellen, Hohlraumwellen, etc. Auf der zweiten Seite (Rückseite) unten befinden sich außerdem nützliche Reihen, Integrale und Zusammenhänge.

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
3 januari 2024
Aantal pagina's
3
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

INTEGRALSÄTZE ELEKTROSTATIK E 8 , 85 10-12




·
#
= .




MULTIPOLENTWICKLUNG
SordF ÄCr) SudV F')
au = Sar'pr)- -
Gauß : . =
div ACr) (F -




E(r) = (F)
Er)
·



S FERNZONE Taylorentwickel, In
1F = IF -
F'13
Fläche
y D




DEMO
=> Fluss von F(r) durch Lokalisierte R
,


- ladungsverteilungen
Sor SSEdFrotAlt
=
SrdV rotÄ
Limp
=
0-Raum)
Stokes :
Sul(RE) ( Ico I(r) =

it +F Ei Qij
Mittelwert RIF =
=

mit ) =




POISON-GLEICHUNG
Jd3r'PCF) 29i
-




Monopolmomentq
-
-
=



A() divE(r) <
unabhängig vo n

-
-
=
=



Dipolmoment Sarüs (F) qiFi Ursprungs





der Wahl des
= =
-
L



Quadrupolmoment EJdr's(r) Xixj'
0⑳
mit

6
gij Symetrisch"
=



"spurfrei,
Qij Qji
[iqi (3xirxie-riore) die Ei Qii = =


differenz =



~ mit

(3xiXi'-Gir)p(r)
Fri Flächendungsdichte O(F) Quadrupolmoment Qij Jdr
=




tangentiale Ex (Ez-En 13
j stetig
Ladungsverteilung
Ver
=



für E Konst W= Komponente Ist

=
=
=
1 ·

t
X spring
komponente (E-En ( =E
>
-




F
p( r)
mit verschiedene norma
(EC) / muss in UM
spiegelsymetrisch p(r)
·


* :
W(F)
.

=
. . -




%
Energiedichte W
...
=
werden
Raumbereiche geteilt 5



Win-ar
-E Dipolmoment # ↑ =
Qi =
0 Vi + j




di
ein 0
Eon Elf
=> =





coulomb-F = Q9i
Ö
·
=

=
Q .
E & = A(r) D( r) p
Kraft
=



Kugelsymetrisch
:
-
-




Dipolfeld Go




DEMO
z B
a G


.





=ein
Quadruparoment =
o
=
L diß =a Tors (3(p) p) -




RANDWERTPROBLEME Lösungsverfahren für
Poisson-Gleichung AI) =
-
--
+ Qij Ot Ent
WECHSEL-

mit
Wirruwas-W(r) =

gext +
(p . ) Eext -


Randbedingungen
für re
räumlich e (5) Raumbereich V ENERGIE
daß in
geg
:

begrenzt (Dirichlet) = W(r) qEext (p)Eext 5 Que
-

Grenzflächen auf OV
Kraft F
· + +
: = =
an
-




·
obion = Flov (Neumann)
allgemein M
Emitwirkende
:
=

Ex Ext


gepfe
M (dr'rx Ext( + F) =

~
=




neeitend" . Konst
s
DIPOL-DIPOL-
WECHSELWIRKUNG Wiz =do(-3-
IF F215 -




geerdet" h 0 und d h
=
Z . .
B , d .
.
,
.




formale auch Mit
-
Lösung ? => Potential einer fiktiven ladungs- KUGELFLÄCHEN FUNKTIONEN

Enterten Gr
=
GREEN'SCHER
verteilung
fr
RandbedingerhalbvonVsodasin Eigenfunktionen von AaYem( 4) ele + 1) Yem 10 4)
+
=
Ful
=
-




I , ,




DEMO
Potential vo n -

Yem(4) = PerCoss) eine
=




Mit Drf(FF) =
0 VF , Fe Punktladung
-
2 = 0, 1 , 2 ....




/oraFG(F . ) rev) G( , ) BILDLADUNGEN (angeerde e 0 e

~
und m =
Fredr 0
-

= = ... ...
=
0

De
,




-
und Ye - m ( 4) ,
=
1- 1)
M
Ye(0 4) ,
9
=

9B
gespiegelt d -
für
-
-



I Sedr's Grund (r-Gr
r] 0 Gla
geordnet POLYNOMEN


.
=> = -
o erzeug t & = Min (r ,
r')
·
=
,


· LEGENDRE-POLYNOME



S
:




Pe(z) ( 1)M( z2)mi Pen ne
Pe(z) z (E-1)) =
Son Elov Ellov Pelz)
= -

-




Flächenladungsdichte
=


=> = .

do ·




f)mePeM(z)
-




>
-
-




Flächenladung
=
Sor df o Per(z) =
>
-

bilden
in [1 , 17
vollständiges Orthogonalsystem
aus !
= Kraft XB 1
Il ADDITIONSTHEOREM
= -

vo n

=>
Kraft F -JordFG Eq(or) -Sond : Pe
Goder, e Orthogonalität
mer(e) Yem(0 4) = Pelosa
= =




(Fgo Fog) = -




·
Vollständigkeit : (22 + 1) Pe(z) Pe(z) =
G(z -



z) .



Relation Jde Yem (0 4) Ye'm 10 4)
SinTesinRicos(Y-Y')




I 6 Sie
See Omm' Mit
:

COSY costcost +
· =
=
, ,


MAGNETOSTATIR Mo = 1 , 26 . 10-0 N/A2
sphärische
KONINUITÄTSGLEICHUNG Bübt auf die Po(t) = 1
gem
=
Jar'sCr) re Yem(014) Mit ge =
1-17* *
dV Fdl
g Multipolmomente m
q
=

em



F
Stromstärke P1 (x)
scrit)(t) Il L divj
= x
=-
Stromdichte Trit) =


+ = -Lorenztheraft P2(r) =(3x 1) Yo H
ga
= -




dx =
vdt




=Fadungshaltung
C 0 MONOPOL
t(523
=

Pg(z) = -


3x)
= Esedf ) 0
; C DIPOL
=
= 1

-(352




DEMO
P((z) 30 ,3 + 3)
-1
= -




2 2 QUADRUPOL

Moj
=



F
parallel B rotB(r) = -


X # (r) =

In ~


&
itaußerhaltens =
. ..
ab !
Stromschleife 2 aus ist
Stationäre) Maxwellgleichung Yem 10 4)
mit
stoßen sich
V = XF ,




Sar ↓ (ri0 4) = (Aemr Beme) SUNG VON
Vek
pott )=
-




Yem( 4)
st B= Irr
+


..
, ,
3


Magnet- B(r) =
rot bei Zylindrischer
für geschlossene F
[Iriz) = Ker F) Pelos) e
oeffizient
A
+ =

wobei axialersymetrie
AMPEREBr) SedE Stetig
Im 0 bedingungen
MoSedET(r) "Magnet
=


MolE
=

Randflächen M= 0 , da Erice) Erin
·

= = an =




e
Idakeine
>
-
Wenn r =
0 in VwoX =
0) = be =
0 Punkladung in



Unabhängig n ,
#(0) 0




BezugslopRE
>wenn V bisr => e
=



= d()
=


Magnetische
const
er Entfernung
-



aus
+ =
a =>




Emmen
Abstand) der Wahl des SEPERATIONSANSATZ
Crit entwickelten
F
>
- IDENTITÄTEN für
Laplace-Gleichung AP(F) = -




P(r)
F - a
-




Er) geschrieben
ebenstromscheingos Crotdi
I(r)


f(x)g(y)h(z) PDEZerfä

prant
Gyromagnetisches
=
-
-
als Kombination :

_
~
E verhältnis
!
Se -


impuls




Feldlinien : F
Jede Strömen stellt 00
Anordnung Dipol dar

S homogen geladene Kugel
einen
von aus
großer Entfernung
...




·




W
#dip(r) FrMx Baip(r) = [F(F) m] =>
Drehmoment JxIxB(r)) dr EXO
Greensh =S




DEMO
= - =
=




Tar
mit Relativposition z B. (r-) .


Der
.




1
-




Magnetfelds rot [ (F)
Kraft F äußeren =

FWrag
-
eines
. a20
=



(T(r) &(r) dor (m Bext)
-




= = ra
x
Stromverteilung
:

auf lokalisierte
=
==



div (Mxe)
=
e
=




m
mi
=
für Konst R
Wechselwirkungspotentia
=




S
(Mr
- -
e
(F ~
-
rz Mz
-


To Magnetischer Dipole
- -
5 zweier
-


rz I rCR

2
MAGNETOSTATIK IN MATERIE
-



Mo(frei Trag)
mit
Zerlegung :
ELEKTROSTATIR IN MATERIE
divi
:
- rot B = +
div(Erin) Mikr Ermo O
mikroskopisch unversell rot




↳?
gilt
= =


- ,


Briuro Mojuiro div B
-


0 ↓ Mikro
=

Jfrei Jgebunden + =

Frei +
Tpol +
Trag R

Brikro drei-dir
übereichen
=
Mile roskopisch
gilt unversell div =
O rot =



Potentia
;
rotierend
=
:
15 -
F'l

=


überTeilchen Vek (r) = der (Tretro mit Magnetfeld =M Dielektrische F) EE) P = + =
coE(r)
itdiCr OfrG =
E (r)
=
unabhängig von Materie ~




Normalkomponente 5
Magnetisie = XmF
rotMg
von
Mit
:




Makroskopisch = EXE Co(E)Eitdir T
G TangentikomphF
=


E (5-51) 0 stetig
=
=

↑ . = ist




Magn Erregung # = -M = -
roti
-
-




& ohungelade
Mit Normalkomponente 5
Grenzfan. . Ford
.




von :

EmakroskopischesFeld) n 1




is
G.
spring
-//p 7 Opol
=
R (52-51) =
Ofrei springte
normal




DEMO
0




in >
-
Magnetisierungen
flächenstromdichte
=




normal
für Trei =
O


Ba=Be
auf Grenzfläche (OV)

Hama =
Humm
:
=
anfreinladungen
f
a ls
Die
-argential Komponente
(E-Ei) X =
0 ist
von

stetig
E :
targential E =
EzE) EzDn =
EnDa
=
-
a =
I go

Magnetisierung M n
:


Bo


&
Elektrostatische
=>


tangential
=> AerPeco
Ha He BuMz
BaMn
:
=
Jdr Seri(r) [(r)
= =




- Ex-Me Energie (ridium) W EJvdrD(r) E(r)
=
=
.




Vektorfelder (r) mit die Tr) =0 und
!
RANDWERTPROBLEME :




x =EC) Er)
rot (r) 0 verschwinden d h
. E(r)
Energiedichte
=
0
-




(Baußen (Berl +Ge Fett) Pelost)
=



Binnen) D ↑Mo mit Wer [
.
&
,

i) M const
inganzV
=
- .

-
= = = -





·



-




Polarisation --
ii) T F
-



= 0 in V MitRBaufOV = = -
*-Mag
=
3 Tolz
ZEITABHÄNGIGE FELDER ↓


magnetischfuß
iii) und Drag divF -
MojtCoMdNBAfri+ 3
0 0 V
rotE
in
= -




divE =
=

mit
=




o
=




-Jar'
rad
T
Mit
Frag
-
-




LÖSUNGEN
=



F
rotB
=
div B 0 rot =
frei
(mit Lenz-Regel) = =




=>
Mit M


-


·
+
-




s
mit
-




=>
inhomogene F,
--




oder Ei
L Wellengleichungen
-




&
mit Eichtransformationsfreiheit :




#
-T mitt = E-oNot =>
Irrit) =
coJd3r' ACrit-EIF-F'l)
divergiert für (11 122

8
Leitere
F'l


* (F
für Stromfäden
#
...
,


! E
-
:

mit X
grad
-



T
+



induc = (drj)Fr) EnSEdFTE) Ä (r) = Jut
=




Jeder SedEr Frez( = Sar
-
IF -F'l)
-




-F :

t)
=



100
Leistungsdichte i
IF F'l

= ditE(r
-


>
-



Leistung t) [iqi(EtrixB) Ei




Seme
Leistung Zeit tret (
I mit retarderder KAUSALITÄT !!!)
= .




-I Kind
=
=
Hell R i
=
(inv)
einer Stromquelle)
. =

z B . .




-2-

Energiestromdie St = Et)XI mit Energiedichte wem = [F E 5] = E +B
-
+ .




und Sderdivs
Energiestrom JordF .
5 =




L N]eA
MM
=
.

Kontinuitätsgleichung
div übervolumenvdasleliest
dw
eine
lange spule -JE - PONSCHE =G ditrat = EM
=
const =
$8.62
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
AdelinaB Technische Universität München
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
59
Lid sinds
5 jaar
Aantal volgers
29
Documenten
35
Laatst verkocht
5 maanden geleden

4.3

8 beoordelingen

5
4
4
2
3
2
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen