100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary BBS2042 Cell signaling: All Cases

Rating
4.8
(4)
Sold
46
Pages
248
Uploaded on
29-03-2018
Written in
2017/2018

All cases of the cell signaling course including a lot of pictures. Grade obtained: 8,7

Institution
Course














Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 29, 2018
Number of pages
248
Written in
2017/2018
Type
Summary

Subjects

Content preview

BBS2042 All
Cases

,Table of Contents

Case 1: The cellular intra- and internet .......................................................................................... 5
1. Explain the different kinds of cell junctions .................................................................................... 5
2. What are the different types of signaling? (crines) + feedback loops, hormones, distances to
signal.................................................................................................................................................. 19
3. What different receptors are involved? (Only classification) ....................................................... 24
4. Examples of signaling pathways .................................................................................................... 26


Case 2: Listen very carefully, I will tell you this (more than) once ................................................. 28
1. Different classes of signal molecules - First the general types (hormone, neurotransmitter etc.) -
Then properties (like hydrophilic, lipophilic)..................................................................................... 28
2. Production of signal molecules in the cell + (partly) secretion and transport .............................. 32
3. How is the signal received by the target cell and which function does the signal perform? ....... 39
4. Gasotransmitters, Louis Ignarro  NO + other molecules ........................................................... 43
5. Neurotransmitters, types and mechanisms .................................................................................. 47
6. Secretion from the cell, extracellular vesicles ............................................................................... 53
7. Protein secretion pathways ........................................................................................................... 59


Case 3: Signaling to degrade mRNA ............................................................................................. 70
1. What is RNAi? - Types: sh, micro, lnc, si - Evolution / history - PKR reaction ............................... 70
2. Production of RNAi ........................................................................................................................ 74
3. Secretion of RNAi + traveling......................................................................................................... 78
4. Function of RNAi - Received by target cell .................................................................................... 81


Case 4: From outside to inside without entering .......................................................................... 86
1. Structure + function different types of receptors that induce signal transduction (General
principles cell signaling included) ...................................................................................................... 86
2. GCPR + G protein pathway + the scheme in the case ................................................................... 89
3. Enzyme-coupled receptor pathway ............................................................................................ 103
4. Ras pathway - Role in tumors / oncogenes ................................................................................. 120
5. Examples of where these pathways come in play....................................................................... 122


Case 5: What happens when signals go nuclear? ........................................................................124
1. Structure of nuclear receptors  different types....................................................................... 124
2. Function of nuclear receptors  different types........................................................................ 126

, 2A. Consensus sequences................................................................................................................ 128
3. PPARs + PPREs  pathway + vitamin A - What is the link of PPARs to lipids? ............................ 129


Case 6: How to deal with foreign chemical exposures? ...............................................................132
1. Structure, function of AhR pathway ............................................................................................ 132
2. How does TCDD work? - Short-term and long-term effects of TCDD - Normal levels - Binding to
AhR .................................................................................................................................................. 139
3. Detoxification of xenobiotics  example of dioxins - How are we exposed to xenobiotics? .... 142
4. The effect of diet on AhR............................................................................................................. 144


Case 7: Signaling now for in the future .......................................................................................148
1. What is BPA? - Structure + how are we exposed? ...................................................................... 148
2. Function and (long-term) effects of BPA - Endocrine disruptor - Link of BPA with diabetes and
cancer .............................................................................................................................................. 150
3. Detoxification of BPA................................................................................................................... 157
4. Consequences of prenatal exposure to BPA ............................................................................... 158


Case 8: Oxidative stress, the good, the bad and the ugly .............................................................160
1. Common forms of ROS and formation (Where do they come from?) .................................... 160
2. How does ROS redox signaling affect cell functions / homeostasis (balance and disbalance) -
Damaging proteins, DNA damage ................................................................................................... 162
3. Cancer and Alzheimer in relation to ROS (see also LG2 for link with cancer) ............................. 167
4. Types and production of antioxidants - Keap1-Nrf2 - Cullin 3 .................................................... 173


Case 9: Incoming and outgoing signals .......................................................................................181
1. What is mTOR (C1 and C2)? – Structural differences .................................................................. 181
2. mTOR pathway activation - Extracellular - Intracellular.............................................................. 183
3. mTOR pathway inhibition - Endogenous - Exogenous ................................................................ 192
4. Healthy vs. unhealthy effects (diseasescancer, diabetes, aging) ............................................ 193


Case 10: The CRISP(Y) case .........................................................................................................200
1. What are CRISPR and Cas9? ........................................................................................................ 200
2. The CRISPR pathway in bacteria .................................................................................................. 201
3. How is it applied to humans? ...................................................................................................... 210
4. BRCA pathway and breast cancer ............................................................................................... 213
5. Application of CRISPR/Cas9 in breast cancer .............................................................................. 216

, Case 11: How to use the toolbox? ............................................................................................217
1. Pathology of cardiac hypertrophy and the role of cell signaling ................................................. 217
2. Pathology of acute lymphocytic leukemia and the role of cell signaling .................................... 221


Case 13: From mutations to cancer ............................................................................................224
1. Steps in cancer formation, hallmarks of cancer .......................................................................... 224
2. How are tumor suppressor genes and oncogenes involved in cancer? ...................................... 233
3. How can carcinogens cause mutations? ..................................................................................... 240
4. Colon cancer & heritability .......................................................................................................... 243

,Case 1: The cellular intra- and internet

Problem: Cell-cell communication

Learning goals

1. Explain the different kinds of cell junctions

2. What are the different types of signaling? (crines)
- + distances to signal

3. What different receptors are involved? (Only classification)



1. Explain the different kinds of cell junctions

Sources:
- The Cell, Chapter 19
- Silverthorn, Chapter 3



Overview

There are two broad categories of tissues in all animals: connective tissues and epithelial tissues.

• Connective tissues consist of an extracellular matrix (ECM) produced by cells that are
distributed sparsely in the matrix. The matrix bears most of the mechanical stress to which
the tissue is subjected. Cell-matrix junctions link the cytoskeleton to the matrixcells can
move through the matrix and monitor changes in its mechanical properties.
• Epithelial tissues consist of cells that are tightly bound together into sheets called epithelia.
These tissues have a thin ECM called the basal lamina / basement membrane, which
underlies the sheet.
o Cell-cell junctions attach cells in the epithelium to each other. At these junctions,
cytoskeletal filaments are anchored that transmit stresses through the cells, from
one adhesion to another.
o Cell-matrix junctions link the cytoskeleton to the basal lamina.




o In a simple columnar epithelium, a single layer of tall cells is located on a basal
lamina.
o The apex (uppermost surface of the cells) is exposed to the extracellular medium.

5

,o The cells connect to each other on their lateral surfaces.
o Two types of anchoring junctions link the cytoskeletons of adjacent cells:
▪ Adherens junctions connect actin filament bundles
▪ Desmosomes connected intermediate filaments
o The cytoskeleton is linked to the basal lamina by two additional types of anchoring
junctions:
▪ Actin-linked cell-matrix junctions anchor actin filaments to the matrix
▪ Hemidesmosomes anchor intermediate filaments to the matrix




o There are also tight junctions and gap junctions:



6

, ▪ Tight junctions hold the cells closely together near the apex. This prevents
leakage of molecules across the epithelium.
▪ Gap junctions are located near the basal end of the cells. They are channel-
forming junctions that link the cytoplasm of adjacent cells.
o The four anchoring junction types depend on transmembrane adhesion proteins
that span the plasma membrane. One end links to the cytoskeleton inside the cell
and the other end links to extracellular structures.




o There are two super-families of these proteins:
▪ Cadherins mediate cell to cell attachment
▪ Integrins mediate cell to matrix attachment
o There is specialization within each family: some cadherins link to actin and form
adherens junctions, while others link to intermediate filaments and form
desmosomes; likewise, some integrins link to actin and form actin-linked cell–matrix
junctions, while others link to intermediate filaments and form hemidesmosomes.




Cell-cell junctions

The two types of cell-cell anchoring junctions link the cytoskeleton of one cell with that of its
neighbor. Their main function is to resist the external forces that pull cells apart.


7
$7.23
Get access to the full document:
Purchased by 46 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 4 reviews
10 months ago

1 year ago

well-maintained, complete, organized

4 year ago

5 year ago

4.8

4 reviews

5
3
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
mischalenaers Maastricht University
Follow You need to be logged in order to follow users or courses
Sold
144
Member since
7 year
Number of followers
116
Documents
0
Last sold
1 week ago

4.5

10 reviews

5
6
4
3
3
1
2
0
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions