↳
↳
(n1
(n Xy
=
=
0
(nx +
/ny
jxx =
I
* +
(x - x =
( )
↳ (n Y = (nx -
1y ( z) (5 1) 5
- -
- =
↳ In xr = r .
Inx
&* dx Because * is continuous ,
we must
be able it
&
to integrate
In In 3x" Ind (n30 in xi) (1220in +
2))
- =
It d
-
-
In 304/nx- 1n2- 2 Iny It turns ...
out (nx =
In * >
-
In (x* +1) -
lux" - (n(x 1) -
E1nx * (lux] =
y (j+ at) = *
Inix)
-2)((kdx
+
(nxsini(ix) - (n(x" -2) =
mn(x)0
In x50 In sin (ix) Gln(x +
k
-
5 In x > 2 In sin(ix) -
isIn(x" -2)
:
[Inx](((x)) =
*
& [5(n x = (n(x *
1) - 4(n(x -
2)]
/luxoInl - In (x-2)"] (f(q(x)) f'(q(x)) = -
q(x)
"In In
T
* ((xix1))) = 3(x x)) ·
2x = 6x(x -1) *
Grupk f(x) = In x
x((n(g(x))) 4x) =
-
q(x) =
q(x) = ex
1
Y
39((n(3xx -
1) 134 = -
6x =
2
'
*x(ix] Ex (((nx)b) -((nx) *. k
C
·
= =
]
=
V
= * =
nux)
* [In(2x)] (2xx(x) 1) ) -
202(X 1)*. 3x -
54fxdx = za &
zi) 25
3x2
(4xsdx = 4 .
-
Ssinx dx = -cosXbc
,
,
,