100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Interview

Math exercises correction.

Rating
-
Sold
-
Pages
3
Uploaded on
27-12-2023
Written in
2020/2021

These documents provide various math exercises on diverse subjects covered in calculus such as complex numbers, matrix, primitives, and so on. They come from a class in the top French high school Louis-Le-Grand founded by Louis XIV.

Show more Read less
Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Secondary school
Study
High school
Course
School year
1

Document information

Uploaded on
December 27, 2023
Number of pages
3
Written in
2020/2021
Type
Interview
Company
Unknown
Person
Unknown

Subjects

Content preview

LLG-Term Maths Expertes 2020-21 Chapitre 4 Nombres complexes : Exercices




Nombres complexes : Exercices

N° 8 page 17 u 0 = 1, u n+1 = (1 + i) × u n .
1. u 0 = 1 , u1 = 1 + i , u 2 = (1 + i)2 = 2i , u 3 = 2i(1 + i) = −2 + 2i .
2. (u n ) est la suite géométrique de raison q = 1 + i et de premier terme u 0 = 1.
3. u n = q n u 0 , donc u n = (1 + i)n .
¢4
4. u 8 = (1 + i)8 = (1 + i)2 = (2i)4 = 24 i4 = 16 car i4 = (i2 )2 = (−1)2 = 1 .
¡


Complément : Après avoir remarqué que u 4 = −4 = −4u 0 , on voit que u 5 = −4u 1 , u 6 = −4u 2 ,
u 7 = −4u 3 , etc, c’est-à-dire que les suites (u 4p ) , (u 4p+1 ) , (u 4p+2 ) , (u 4p+3 ) sont des suites géométriques
de raison −4 , ce qui permet de connaître la forme algébrique de u n de la façon suivante :

n 4p 4p + 1 4p + 2 4p + 3
p p p
un (−4) (−4) (1 + i) (−4) (2i) (−4)p (−2 + 2i)

ou si l’on préfère :

n 4p 4p + 1 4p + 2 4p + 3
p 2p p 2p p 2p+1 p 2p+1
un (−1) 2 (−1) 2 (1 + i) (−1) 2 i (−1) 2 (−1 + i)


N° 18 page 19

1. Z = z 2 − iz + 3i − 4 Z = z 2 − iz + 3i − 4 = z 2 − iz + (−4 + 3i) = z 2 − i × z + (−4 − 3i) = z 2 + i z − 3i − 4 .
2. Z = 3i + (2 + i)z Z = 3i + (2 + i) z = −3i + (2 − i)z .
µ ¶
3z + i 3z + i 3z + i 3z − i
3. Z = Z= = = .
z −i z −i z −i z +i

N° 20 page 19

On pose Z = x + yi et z = s + t i . On suppose ici que Z = z n .
On a donc x 2 + y 2 = Z Z et s 2 + t 2 = z z .
¡ ¢n ¢n
Or Z Z = z n z n = z n z n = z z , donc x 2 + y 2 = s 2 + t 2 .
¡


N° 21 page 19

Soit P (z) = az 2 + bz + c où a, b, c sont des réels.
Si z 0 est une racine de P (z) , on a P (z 0 ) = 0 , ce qui entraîne que P (z 0 ) = 0 = 0 .
Or P (z 0 ) = a z 0 2 + b z 0 + c , et comme a, b, c sont des réels, a = a , b = b , c = c , donc P (z 0 ) = a z 0 2 + b z 0 + c .
D’où a z 0 2 + b z 0 + c = 0 , ce qui exprime que z 0 est une racine de P (z).

Remarques :
1) Si les coefficients, ou certains coefficients, ne sont pas réels, le résultat n’est plus vrai. Par exemple, on
constate que z 0 = i est une racine du polynôme z 2 + (1 − i)z − i , mais que son conjugué z 0 = −i n’en est
pas une.

2) Le résultat se généralise facilement à un polynôme de degré n à coefficients réels :
si P (z) = a n z n + a n−1 z n−1 + · · · + a 1 z + a 0 et si a 0 , a 1 , . . . , a n sont tous réels, alors on établit comme ci-dessus
¡ ¢
que, pour tout z, P (z) = P z .
Donc z 0 est une racine de P (z) si et seulement si z 0 en est une également.




1
$12.69
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
kenzou

Also available in package deal

Get to know the seller

Seller avatar
kenzou ESPCI
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
6
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions