100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Manual

Thomas Calculus (Solution Manual) - (11 ed)

Rating
4.7
(3)
Sold
5
Pages
1057
Uploaded on
11-03-2018
Written in
2006/2007

Complete Solution manual for Thomas Calculus (11th edition). It is in pdf format. All 16 Chapters are included.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
March 11, 2018
Number of pages
1057
Written in
2006/2007
Type
Manual
Contains
Unknown

Subjects

Content preview

CHAPTER 1 PRELIMINARIES

1.1 REAL NUMBERS AND THE REAL LINE
2 3 8 9
1. Executing long division, "
9 œ 0.1, 9 œ 0.2, 9 œ 0.3, 9 œ 0.8, 9 œ 0.9

2 3 9 11
2. Executing long division, "
11 œ 0.09, 11 œ 0.18, 11 œ 0.27, 11 œ 0.81, 11 œ 0.99

3. NT = necessarily true, NNT = Not necessarily true. Given: 2 < x < 6.
a) NNT. 5 is a counter example.
b) NT. 2 < x < 6 Ê 2 ! 2 < x ! 2 < 6 ! 2 Ê 0 < x ! 2 < 2.
c) NT. 2 < x < 6 Ê 2/2 < x/2 < 6/2 Ê 1 < x < 3.
d) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê 1/6 < 1/x < 1/2.
e) NT. 2 < x < 6 Ê 1/2 > 1/x > 1/6 Ê 1/6 < 1/x < 1/2 Ê 6(1/6) < 6(1/x) < 6(1/2) Ê 1 < 6/x < 3.
f) NT. 2 < x < 6 Ê x < 6 Ê (x ! 4) < 2 and 2 < x < 6 Ê x > 2 Ê !x < !2 Ê !x + 4 < 2 Ê !(x ! 4) < 2.
The pair of inequalities (x ! 4) < 2 and !(x ! 4) < 2 Ê | x ! 4 | < 2.
g) NT. 2 < x < 6 Ê !2 > !x > !6 Ê !6 < !x < !2. But !2 < 2. So !6 < !x < !2 < 2 or !6 < !x < 2.
h) NT. 2 < x < 6 Ê !1(2) > !1(x) < !1(6) Ê !6 < !x < !2

4. NT = necessarily true, NNT = Not necessarily true. Given: !1 < y ! 5 < 1.
a) NT. !1 < y ! 5 < 1 Ê !1 + 5 < y ! 5 + 5 < 1 + 5 Ê 4 < y < 6.
b) NNT. y = 5 is a counter example. (Actually, never true given that 4 " y " 6)
c) NT. From a), !1 < y ! 5 < 1, Ê 4 < y < 6 Ê y > 4.
d) NT. From a), !1 < y ! 5 < 1, Ê 4 < y < 6 Ê y < 6.
e) NT. !1 < y ! 5 < 1 Ê !1 + 1 < y ! 5 + 1 < 1 + 1 Ê 0 < y ! 4 < 2.
f) NT. !1 < y ! 5 < 1 Ê (1/2)(!1 + 5) < (1/2)(y ! 5 + 5) < (1/2)(1 + 5) Ê 2 < y/2 < 3.
g) NT. From a), 4 < y < 6 Ê 1/4 > 1/y > 1/6 Ê 1/6 < 1/y < 1/4.
h) NT. !1 < y ! 5 < 1 Ê y ! 5 > !1 Ê y > 4 Ê !y < !4 Ê !y + 5 < 1 Ê !(y ! 5) < 1.
Also, !1 < y ! 5 < 1 Ê y ! 5 < 1. The pair of inequalities !(y ! 5) < 1 and (y ! 5) < 1 Ê | y ! 5 | < 1.


5. !2x # 4 Ê x " !2

6. 8 ! 3x 5 Ê !3x !3 Ê x Ÿ 1 ïïïïïïïïïñqqqqqqqqp x
1

5
7. 5x ! $ Ÿ ( ! 3x Ê 8x Ÿ 10 Ê x Ÿ 4


8. 3(2 ! x) # 2(3 % x) Ê 6 ! 3x # 6 % 2x
Ê 0 # 5x Ê 0 # x ïïïïïïïïïðqqqqqqqqp x
0

7 7
9. 2x ! "
# 7x % 6 Ê ! "# ! 6 5x
ˆ! 10 ‰
Ê "
5 6 x or ! "
3 x

6 !x 3x!4
10. 4 " 2 Ê 12 ! 2x " 12x ! 16
Ê 28 " 14x Ê 2 " x qqqqqqqqqðïïïïïïïïî x
2

,2 Chapter 1 Preliminaries
4
11. 5 (x ! 2) " "
3 (x ! 6) Ê 12(x ! 2) " 5(x ! 6)
Ê 12x ! 24 " 5x ! 30 Ê 7x " !6 or x " ! 67

12. ! x"2 5 Ÿ 12"3x
4 Ê !(4x % 20) Ÿ 24 % 6x
Ê !44 Ÿ 10x Ê ! 22
5 Ÿx qqqqqqqqqñïïïïïïïïî x
!22/5

13. y œ 3 or y œ !3

14. y ! 3 œ 7 or y ! 3 œ !7 Ê y œ 10 or y œ !4

15. 2t % 5 œ 4 or 2t % & œ !4 Ê 2t œ !1 or 2t œ !9 Ê t œ ! "# or t œ ! 9#

16. 1 ! t œ 1 or 1 ! t œ !1 Ê !t œ ! or !t œ !2 Ê t œ 0 or t œ 2

9
17. 8 ! 3s œ 2 or 8 ! 3s œ ! #9 Ê !3s œ ! #7 or !3s œ ! 25
# Ê sœ
7
6 or s œ 25
6


s s s s
18. # ! 1 œ 1 or # ! 1 œ !1 Ê # œ 2 or # œ ! Ê s œ 4 or s œ 0


19. !2 " x " 2; solution interval (!2ß 2)

20. !2 Ÿ x Ÿ 2; solution interval [!2ß 2] qqqqñïïïïïïïïñqqqqp x
!2 2

21. !3 Ÿ t ! 1 Ÿ 3 Ê !2 Ÿ t Ÿ 4; solution interval [!2ß 4]

22. !1 " t % 2 " 1 Ê !3 " t " !1;
solution interval (!3ß !1) qqqqðïïïïïïïïðqqqqp t
!3 !1

11
23. !% " 3y ! 7 " 4 Ê 3 " 3y " 11 Ê 1 " y " 3 ;
11 ‰
solution interval ˆ1ß 3


24. !1 " 2y % 5 " " Ê !6 " 2y " !4 Ê !3 " y " !2;
solution interval (!3ß !2) qqqqðïïïïïïïïðqqqqp y
!3 !2

z z
25. !1 Ÿ 5 !1Ÿ1 Ê 0Ÿ 5 Ÿ 2 Ê 0 Ÿ z Ÿ 10;
solution interval [0ß 10]

3z 3z
26. !2 Ÿ ! 1 Ÿ 2 Ê !1 Ÿ
# # Ÿ 3 Ê ! 23 Ÿ z Ÿ 2;
solution interval !! 23 ß 2‘ qqqqñïïïïïïïïñqqqqp z
!2/3 2

27. ! "# " 3 ! "
x " "
# Ê ! 7# " ! x" " ! 5# Ê 7
# # "
x # 5
#
2 2
Ê 7 "x" 5 ; solution interval ˆ 27 ß 25 ‰


2 2 x
28. !3 " x !4"3 Ê 1" x "( Ê 1# # # "
7
2 2
Ê 2#x# 7 Ê 7 " x " 2; solution interval ˆ 27 ß 2‰ qqqqðïïïïïïïïðqqqqp x
2/7 2

, Section 1.1 Real Numbers and the Real Line 3

29. 2s 4 or !2s 4 Ê s 2 or s Ÿ !2;
solution intervals (!_ß !2] ' [2ß _)


30. s % 3 "
# or !(s % 3) "
# Ê s ! 5# or !s 7
#
Ê s ! 5# or s Ÿ ! 7# ;
solution intervals ˆ!_ß ! 7# ‘ ' !! 5# ß _‰ ïïïïïïñqqqqqqñïïïïïïî s
!7/2 !5/2

31. 1 ! x # 1 or !(" ! x) # 1 Ê !x # 0 or x # 2
Ê x " 0 or x # 2; solution intervals (!_ß !) ' (2ß _)

32. 2 ! 3x # 5 or !(2 ! 3x) # 5 Ê !3x # 3 or 3x # 7
Ê x " !1 or x # 73 ;
solution intervals (!_ß !1) ' ˆ 73 ß _‰ ïïïïïïðqqqqqqðïïïïïïî x
!1 7/3

r""
33. # 1 or ! ˆ r"# 1 ‰ 1 Ê r%1 2 or r % 1 Ÿ !2
Ê r 1 or r Ÿ !3; solution intervals (!_ß !3] ' [1ß _)

3r 2
34. 5 !"# 5 or ! ˆ 3r5 ! "‰ # 2
5
3r 7
Ê 5 or ! 3r5 # ! 53 Ê r # 37 or r " 1
# 5
solution intervals (!_ß ") ' ˆ 73 ß _‰ ïïïïïïðqqqqqqðïïïïïïî r
1 7/3

35. x# " # Ê kxk " È2 Ê !È2 " x " È2 ;
solution interval Š!È2ß È2‹ qqqqqqðïïïïïïðqqqqqqp x
!È # È#


36. 4 Ÿ x# Ê 2 Ÿ kxk Ê x 2 or x Ÿ !2;
solution interval (!_ß !2] ' [2ß _) ïïïïïïñqqqqqqñïïïïïïî r
!2 2

37. 4 " x# " 9 Ê 2 " kxk " 3 Ê 2 " x " 3 or 2 " !x " 3
Ê 2 " x " 3 or !3 " x " !2;
solution intervals (!3ß !2) ' (2ß 3) qqqqðïïïïðqqqqðïïïïðqqqp x
!3 !2 2 3

38. "
9 " x# " "
4 Ê "
3 " kxk " "
# Ê "
3 "x" "
# or "
3 " !x " "
#
Ê "
3 "x" or ! "# " x " ! "3 ;
"
#
solution intervals ˆ! "# ß ! "3 ‰ ' ˆ "3 ß "# ‰ qqqqðïïïïðqqqqðïïïïðqqqp x
!1/2 !1/3 1/3 1/2

39. (x ! 1)# " 4 Ê kx ! 1k " 2 Ê !2 " x ! 1 " 2
Ê !1 " x " 3; solution interval (!"ß $) qqqqqqðïïïïïïïïðqqqqp x
!1 3

40. (x % 3)# " # Ê kx % 3k " È2
Ê !È2 " x % 3 " È2 or !3 ! È2 " x " !3 % È2 ;
solution interval Š!3 ! È2ß !3 % È2‹ qqqqqqðïïïïïïïïðqqqqp x
!3 ! È # !3 % È #

, 4 Chapter 1 Preliminaries

1 1 2
41. x# ! x " 0 Ê x# ! x + 4 < 4 Ê ˆx ! 12 ‰ < 1
4 ʹx ! 1
2 ¹< 1
2 Ê ! 12 < x ! 1
2 < 1
2 Ê 0 < x < 1.
So the solution is the interval (0ß 1)

1 9 1 3 1 3
42. x# ! x ! 2 0 Ê x# ! x + 4 4 Ê ¹x ! 2 ¹ 2 Ê x! 2 2 or !ˆx ! 12 ‰ 3
2 Ê x 2 or x Ÿ !1.
The solution interval is (!_ß !1] ' [2ß _)

43. True if a 0; False if a " 0.

44. kx ! 1k œ 1 ! x Í k!(x ! 1)k œ 1 ! x Í 1 ! x 0 Í xŸ1

45. (1) ka % bk œ (a % b) or ka % bk œ !(a % b);
both squared equal (a % b)#
(2) ab Ÿ kabk œ kak kbk
(3) kak œ a or kak œ !a, so kak# œ a# ; likewise, kbk# œ b#
(4) x# Ÿ y# implies Èx# Ÿ Èy# or x Ÿ y for all nonnegative real numbers x and y. Let x œ ka % bk and
y œ kak % kbk so that ka % bk# Ÿ akak % kbkb# Ê ka % bk Ÿ kak % kbk .

46. If a 0 and b 0, then ab 0 and kabk œ ab œ kak kbk .
If a " 0 and b " 0, then ab # 0 and kabk œ ab œ (!a)(!b) œ kak kbk .
If a 0 and b " 0, then ab Ÿ 0 and kabk œ !(ab) œ (a)(!b) œ kak kbk .
If a " 0 and b 0, then ab Ÿ 0 and kabk œ !(ab) œ (!a)(b) œ kak kbk .

47. !3 Ÿ x Ÿ 3 and x # ! "# Ê ! "
# " x Ÿ 3.

48. Graph of kxk % kyk Ÿ 1 is the interior
of “diamond-shaped" region.




49. Let $ be a real number > 0 and f(x) = 2x + 1. Suppose that | x!1 | < $ . Then | x!1 | < $ Ê 2| x!1 | < 2$ Ê
| 2x ! # | < 2$ Ê | (2x + 1) ! 3 | < 2$ Ê | f(x) ! f(1) | < 2$

50. Let % > 0 be any positive number and f(x) = 2x + 3. Suppose that | x ! 0 | < %/2. Then 2| x ! 0 | < % and
| 2x + 3 !3 | < %. But f(x) = 2x + 3 and f(0) = 3. Thus | f(x) ! f(0) | < %.

51. Consider: i) a > 0; ii) a < 0; iii) a = 0.
i) For a > 0, | a | œ a by definition. Now, a > 0 Ê !a < 0. Let !a = b. By definition, | b | œ !b. Since b = !a,
| !a | œ !(!a) œ a and | a | œ | !a | œ a.
ii) For a < 0, | a | œ !a. Now, a < 0 Ê !a > 0. Let !a œ b. By definition, | b | œ b and thus |!a| œ !a. So again
| a | œ |!a|.
iii) By definition | 0 | œ 0 and since !0 œ 0, | !0 | œ 0. Thus, by i), ii), and iii) | a | œ | !a | for any real number.
$24.99
Get access to the full document:
Purchased by 5 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 3 reviews
5 year ago

5 year ago

5 year ago

very happy

4.7

3 reviews

5
2
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Ahmedis98 Capital University of Science and Technology
Follow You need to be logged in order to follow users or courses
Sold
27
Member since
8 year
Number of followers
22
Documents
10
Last sold
2 year ago

4.7

7 reviews

5
5
4
2
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions