Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

ISYE 6501 - Midterm 2 Questions and Answers 100% Correct

Note
-
Vendu
-
Pages
26
Grade
A+
Publié le
26-11-2023
Écrit en
2023/2024

ISYE 6501 - Midterm 2 Questions and Answers 100% Correct when might overfitting occur when the # of factors is close to or larger than the # of data points causing the model to potentially fit too closely to random effects Why are simple models better than complex ones less data is required; less chance of insignificant factors and easier to interpret what is forward selection we select the best new factor and see if it's good enough (R^2, AIC, or p-value) add it to our model and fit the model with the current set of factors. Then at the end we remove factors that are lower than a certain threshold what is backward elimination we start with all factors and find the worst on a supplied threshold (p = 0.15). If it is worse we remove it and start the process over. We do that until we have the number of factors that we want and then we move the factors lower than a second threshold (p = .05) and fit the model with all set of factors what is stepwise regression it is a combination of forward selection and backward elimination. We can either start with all factors or no factors and at each step we remove or add a factor. As we go through the procedure after adding each new factor and at the end we eliminate right away factors that no longer appear. what type of algorithms are stepwise selection? Greedy algorithms - at each step they take one thing that looks best what is LASSO a variable selection method where the coefficients are determined by both minimizing the squared error and the sum of their absolute value not being over a certain threshold t How do you choose t in LASSO use the lasso approach with different values of t and see which gives the best trade off why do we have to scale the data for LASSO if we don't the measure of the data will artificially affect how big the coefficients need to be What is elastic net? A variable selection method that works by minimizing the squared error and constraining the combination of absolute values of coefficients and their squares what is a key difference between stepwise regresson and lasso regression If the data is not scaled, the coefficients can have artificially different orders of magnitude, which means they'll have unbalanced effects on the lasso constraint. Why doesn't Ridge Regression perform variable selection? The coefficients values are squared so they go closer to zero or regularizes them What are the pros and cons of Greedy Algorithms (Forward selection, stepwise elimination, stepwise regression) Good for initial analysis but often don't perform as well on other data because they fit more to random effects than you'd like and appear to have a better fit What are the pros and cons of LASSO and elastic net They are slower but help make models that make better predictions Which two methods does elastic net look like it combines and what are the downsides from it? Ridge Regression and LASSO. Advantages: variable selection from LASSO and Predictive benefits of LASSO. Disadvantages: Arbitrarily rules out some correlated variables like LASSO (don't know which one that is left out should be); Underestimates coefficients of very predictive variables like Ridge Regresison What are some downsides of surveys? Even if you what appears to be a representative sample in simple ways, maybe it isn't in more complex ways. If we're testing to see whether red cars sell for higher prices than blue cars, we need to account for the type and age of the cars in our data set. This is called: Controlling what is a blocking factor a source of variability that is not of primary interest to the experimenter what is an example of a blocking factor The type of car, sports car or family car, is a blocking factor that it could account for some of the difference between red cars and blue cars. Because sports cars are more likely to be red; if we account for the difference, we can reduce the variability in our estimates Under what conditions should you run A/B tests

Montrer plus Lire moins
Établissement
ISYE 6501
Cours
ISYE 6501










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
ISYE 6501
Cours
ISYE 6501

Infos sur le Document

Publié le
26 novembre 2023
Nombre de pages
26
Écrit en
2023/2024
Type
Examen
Contient
Questions et réponses

Sujets

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
BrilliantScores Chamberlain College Of Nursng
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
2824
Membre depuis
3 année
Nombre de followers
2233
Documents
16199
Dernière vente
5 jours de cela
latest updated documents, correct, verified & graded A study materials

get bundles, documents, test banks, case studies, shadow health's, ATIs, HESIs, study guides, summary, assignments & every kind of study materials.

3.8

774 revues

5
388
4
117
3
116
2
37
1
116

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions