100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting - Wiskunde '1. Complexe getallen' GO! Onderwijs

Rating
-
Sold
-
Pages
8
Uploaded on
26-11-2023
Written in
2023/2024

Dit document is een samenvatting van 'Complexe getallen; 1. Complexe getallen', uit het boek 'VBTL 5 - gevorderde wiskunde' voor het vak Wiskunde in het GO! Onderwijs in de doorstroomfinaliteit/ASO.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Secondary school
Study
1e graad
Course
School year
5

Document information

Uploaded on
November 26, 2023
Number of pages
8
Written in
2023/2024
Type
Summary

Subjects

Content preview

Complexe getallen

1. COMPLEXE GETALLEN
1.1 Imaginaire eenheid i
i² is een vierkantswortel uit -1  i² = -1
1.2 Definitie
Een complex getal is een getal van de vorm z = a + bi (a, b ∈ R ). Alle complexe getallen
samen vormen de verzameling C . a noemen we het reële deel van het complex getal. b
noemen we het imaginaire deel. Als b = 0, is het complex getal een zuiver reëel getal.
Het is duidelijk dat R ⊂ C .
Als a = 0 en b ≠ 0, noemen we het complex getal zuiver imaginair.

2. REKENEN MET COMPLEXE GETALLEN
2.1 Som en verschil van twee complexe getallen
Algemene formules voor som en verschil van twee complexe getallen
z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i
z1 - z2 = (a + bi) - (c + di) = (a - c) + (b - d)i
Tegengestelde complexe getallen
Tegengestelde complexe getallen zijn twee complexe getallen waarvan de som 0 is. Het
tegengestelde getal van een complex getal z wordt met -z genoteerd.
Eigenschappen C , +
∀ z1, z2, z3 ∈C :
1. z1 + z2 ∈C
2. z1 + z2 = z2 + z1
3. (z1 + z2) + z3 = z1 + (z2 + z3)
4. z1 + 0 = 0 + z1 = z1
5. z1 + (- z1) = (- z1) + z1 = 0
2.2 Product van twee complexe getallen
Algemene formule voor product van twee complexe getallen
z1 · z2 = (a + bi) · (c + di)
= ac + bci + adi + bdi²
= ac - bd + bci + adi
Eigenschappen C , ·
∀ z1, z2, z3 ∈C :
1. z1 · z2 ∈C
2. z1 · z2 = z2 · z1
3. (z1 · z2) · z3 = z1 · (z2 · z3)
4. z1 · 1 = 1 · z1 = z1
5. 0 · z1 = z1 · 0 = 0
6. z1 · (z2 + z3) = z1 · z2 + z1 · z3




2.3 Toegevoegde complexe getallen of geconjugeerde van een complex getal
Toegevoegde complexe getallen
1

, Toegevoegde complexe getallen zijn getallen die hetzelfde reële deel maar
tegengestelde imaginaire deel hebben. 5 + 2i is de geconjugeerde van 5 - 2i. z wordt z
met a + bi dat a - bi wordt.
Eigenschappen
∀ z, z1, z2 ∈C :
1. ź = z
2. z + z ∈ R 3. z · z ∈ R
4. z 1+ z2 =z1 + z 2
5. z 1 · z 2=z 1 · z 2
Bewijzen eigenschappen




2.4 Quotiënt van twee complexe getallen
Algemene term



2.5 Omgekeerde van een complex getal
Eigenschap
z · z-1 = z-1 · z = 1

2.6 Machtsverheffing in ℂ
Machten in ℂ
∀ a + bi ∈C : (a + bi)0 = 1
(a + bi)1 = a + bi
n 2: (a + bi)n = (a + bi) · (a + bi) · (a + bi) · … · (a + bi) -> n factoren
Speciale machten in ℂ met i
i1 = i, i² = -1, i³ = -i, i4 = 1




2.7 Vierkantswortels uit een negatief reëel getal
Een reëel getal a kleiner dan 0:


2
$6.01
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
thibauttaminiau Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
73
Member since
2 year
Number of followers
22
Documents
339
Last sold
1 day ago

3.8

12 reviews

5
5
4
3
3
2
2
0
1
2

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions