100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Summary of lectures - Research Toolbox - Applied Cognitive Psychology

Rating
5.0
(1)
Sold
10
Pages
45
Uploaded on
20-11-2023
Written in
2023/2024

Summary of important information of lectures for exam. Research Toolbox - Applied Cognitive Psychology

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 20, 2023
Number of pages
45
Written in
2023/2024
Type
Class notes
Professor(s)
Ignace hooge, stella donker, roy hessels
Contains
All classes

Subjects

Content preview

Lecture 1 - introduction

human-centered design: combination of discoverability and feedback

trade-off preferred over solution

Lecture 2 - an example of applied research

eye tracking (ET)
assumption: people attend where they look
you don’t have full control over where you look
advantages: good quality
disadvantages: expensive, hard

mouse tracking (MT)
always double task (eye tracking + mouse tracking)
you have full control so MT is decision-making
advantages: cheap, easy
disadvantages: bad quality

experimental design
trade-off between representative enough and good to work with for sample

time targets
→ fixed: predetermined time
→ self-paced: participant chooses to click next target

prompting
providing cues to remember information participant might not recall spontaneously
→ unaided recall: no prompting
→ aided recall: prompting

spatial gaze can be shown in a heat map

temporal aspects of viewing behavior
1. viewing time/ stimulus duration (higher in MT)
2. number of fixations (eye movements; higher for MT)
3. fixation duration (eye movement; longer with MT)
4. dwell time (eye movement; longer with MT)
5. spontaneous and aided recall (higher during MT)
6. message transfer and viewing times (higher during MT)

limitations experiment on computer
1. resolution (pixels and colors)
2. throughput (processing speed and bandwidth)


1

,color photo
three channels RGB
or CMYK photo (Cyan, Magenta, Yellow and blacK)
→ the higher the number of pixels, the more pixels coded with a color, the better the picture




bit depth: each bit can have two values (0 or 1), so with an 8-bit image (RBG) you will have 2^8
= 256 colors per channel
left picture: 8 bits = 256 colors per channel
middle picture: 4 bits = 16 colors per channel
right picture: 3 bits = 8 colors per channel

bit to byte: 8 bits together = 1 byte
1 megabyte (MB) = 1000 kilobytes (kB) = 1.000.000 bytes (B) = 8.000.000 bits (b)

calculate file size: image
pixels length x pixels height x bits (x 3 if colored pic) / 8 = bytes / 1000 = kB
→ 8 bit per channel photo: 8 x 3 (RBG; actually 3 pics in 1 because of 3 colors) = 24 bit
→ colored 8-bit pic 200 x 300 pixels: 200 x 300 x 3 x 8 = 1.440.000 bits / 8 = 180.000 byte /
1000 = 180 kB

reduce black-white photo: code to 1 bit per pixel (black = 0, white = 1)
grayscale: each pixel can have an 8-bit (0-255) or 16-bit (0-65535) code → the larger the
number, the smaller the increments between various shades of gray

human open pose




temporal frequency: images per second in a video
→ 100 Hz = 100 times per second

more pixels per cm = more bits per color = sampling at a higher frequency
result: lots of data to save (hard for computer)
solution: choose temporal sampling frequency that only keeps relevantion information

Nyguist frequency = sampling rate / 2
the Fsample (= device, like CD or camera) must be twice as high as your Nyguist frequency
(=Fsignal, like music)


2

,→ a property of the signal you are trying to digitize (Fsignal), not the device used for sampling
(Fsample)
→ you determine the Fsample (so how quickly it must be sampled to correctly digitize without
losing information) of a signal based on the Nyguist frequency

examples
1. if you use a device to measure with 1000 Hz, the Nyguist frequency (= highest
frequency you can pick up) is 500 Hz
2. the highest frequency a healthy young person can hear is around 22 kHz → sample CD
at 44 kHz (so twice as high) → the Nyguist frequency is 22 kHz (= highest frequency
you can hear from CD)

if Fsample = Fsignal
you don’t capture the signal (you don’t see the bird
moving)

if Fsample is slightly higher than Fsignal
you have a sample problem




moiré artefacts
the outside world always has a higher resolution than any
camera
example: device with 200 Hz can capture frequencies till
100 Hz, otherwise moiré patterns
solution: use low-pass filter before sampling (digitize)


3

, compression: reducing file size by smartly encoding information
more compression = smaller image = more processing power necessary to unpack it
benefits: faster data transmission, reduced storage requirements
drawbacks: loss of quality, compatibility issues, irreversible changes

examples compression methods
image compression: tiff, jpg, bmp, png
sound compression: wav, aiff, mp3
video compression: AVI

lossy compression (JPG, MP3)
reduce file size very effectively by permanently eliminating some of the less important data
→ only use if trade-off between size reduction and loss of quality is acceptable

lossless compression (PNG, TIFF)
stores only the differences between the frames and uses an algorithm to form complete file
advantage: small files without lost information (ideal for experiments)
disadvantage: it takes processing power to decode a compressed file

examples
computer with a lot of computation power but not much memory → use lossless files
computer that is lacking computation power but has a lot of memory → use uncompressed
files

dpi = dots per inch

graphical formats image compression
PNG GIF TIFF JPG BMP

color depth (bits) 48 8 24 24 24

lossy compression yes

lossless compression yes yes yes yes

suitable for experiment ++ - + -- +


4 parameters audio files
1. sampling frequency
higher frequency = large files
for healthy human being the maximum frequency is 22 kHz, so for CD quality you
need 2 x 22 kHz = 44 kHz




4

Reviews from verified buyers

Showing all reviews
1 year ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
julieheijnen Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
80
Member since
7 year
Number of followers
67
Documents
35
Last sold
3 months ago

4.4

15 reviews

5
9
4
4
3
1
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions