Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Test Bank for Julien’s Primer of Drug Action.pdf

Note
-
Vendu
-
Pages
511
Grade
A+
Publié le
14-11-2023
Écrit en
2023/2024

COLLEGE ALGEBRA AND TRIGONOMETRY DATE 1. Match the set described in Column I with the correct interval 1. a. notation from Column II. Choices in Column II may be used once, more than once, or not at all. b. I II c. a. Domain of f (x)  x  3 A. (,) d. b. Range of f (x)  3 B. 3,  c. Domain of f  x  x 2 16 C. 0, 2 e. d. Range of y  2x 2 D. 0,  e. Domain of f (x)  E. 3, 3 f. f. Range of f (x)   2 F. , 2 g. Domain of f (x)  x  2 G. 3,  g. h. Range of f (x)  x  3 H. 7,  i. Domain of y  2s 2 h. j. Range of f  x  x 2  7 i. j. The graph shows the line that passes through the points (  5,  3) and (  1, 4). Refer to it to answer Exercises 2–6. 2. What is the slope of the line? 2. 3. What is the distance between the two points shown? 3. 4. What are the coordinates of the midpoint of the segment 4. joining the two points? 5. Find the standard form of the equation of the line. 5. 6. Write the linear function defined by has this line as its graph. f (x)  ax  b that 6. 3 x  2 CHAPTER 2, FORM A 55 .  5 7  Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant. 7. 7. 8. 8. 9. Suppose point P has coordinates  2 , 3  .   a. What is the equation of the vertical line through P? 9. a. b. What is the equation of the horizontal line through P? b. 10. Find the slope-intercept form of the equation of the line passing through (2, 5) and a. parallel to the graph of y  4x  7; 10. a. b. perpendicular to the graph of y  4x  7. b. Graph each relation. 11. x  2 y  3 1 11. CHAPTER 2, FORM A 56 .  3x 1 if x  0 12. 13. f  x  □ x□  2 f  x  2x 1 if x  0  12. 13. 14. Explain how the graph of y   1 2  5 can be obtained 14. from the graph of y  x. 15. Determine whether the graph of 2x 2  3y 2  1 is symmetric 15. a. with respect to b. a. the x-axis, c. b. the y-axis, c. the origin. Given f  x  x 2 1 and g  x  2x 1, find each of the following. Simplify the expressions when possible. 16.  fg x 17.  f  g x 18. the domain of g f 16. 17. 18. x  3 CHAPTER 2, FORM A 57 .   19. f  x  h  f  x h 19. 20.  f  g0 20. 21.  f  2  g  21. 22.  f ∘ g  x 23.  f ∘ g2 24.  g ∘ f  x 25.  g ∘ f 2 22. 23. 24. 25. CHAPTER 2, FORM B NAME x 3 x COLLEGE ALGEBRA AND TRIGONOMETRY DATE 1. Match the set described in Column I with the correct interval 1. a. notation from Column II. Choices in Column II may be used once, more than once, or not at all. b. I II c. a. Domain of f (x)  x  4 A. (,) d. b. Range of f (x)   2 B. 2,  c. Domain of f  x  3x 2 C. 0, 2 e. d. Range of f  x  x 2  5 D. 0,  e. Domain of f (x)  E. 3, 3 f. f. Range of f (x)  1 F. , 2 g. Domain of f (x)  x  2 G. 5,  g. h. Range of f (x)  x  5 H. 4,  i. Domain of x  2y 2 j. Range of x  2y 2 h. i. j. The graph shows the line that passes through the points (  2,  1) and (4,  3). Refer to it to answer Exercises 2–6. 2. What is the slope of the line? 2. 3. What is the distance between the two points shown? 3. 4. What are the coordinates of the midpoint of the segment 4. joining the two points? 5. Find the standard form of the equation of the line. 5. 6. Write the linear function defined by has this line as its graph. f (x)  ax  b that 6. 3 x  8 CHAPTER 2, FORM B   " " 1 Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant. 7. 7. 8. 8. Graph each relation. 9. f  x  2  3x 9. 10. c Ч f x  x " e 2 ff 10. CHAPTER 2, FORM B    8  9 11. 2x if x  3 11. f  x   4 if  3  x  2 x  4 if x  2 12. Suppose point P has coordinates  5 , 7  .   a. What is the equation of the vertical line through P? 12. a. b. What is the equation of the horizontal line through P? b. 13. Find the slope-intercept form of the equation of the line passing through 6, 3 and a. parallel to the graph of y  3x 12; 13. a. b. perpendicular to the graph of y  3x 12. b. 14. Explain how the graph of y   1 3  2 can be obtained 14. from the graph of y  x. 15. Determine whether the graph of y 2  3x is symmetric 15. a. with respect to b. a. the x-axis, c. b. the y-axis, c. the origin. Given f  x  2x 2  7x  6 and g  x  3x  2, find each of the following. Simplify the expressions when possible. 16.  fg x 17.  f  g x 18. the domain of g f 16. 17. 18. x  4 CHAPTER 2, FORM B   19. f  x  h   f  x  h 19. 20.  f  g   1  20. 21.  g   0   f  21. 22.  f ∘ g   x  23.  f ∘ g   1  24.  g ∘ f   x  25.  g ∘ f   1  22. 23. 24. 25. CHAPTER 2, FORM C NAME 62 x 3 x COLLEGE ALGEBRA AND TRIGONOMETRY DATE 1. Match the set described in Column I with the correct interval 1. a. notation from Column II. Choices in Column II may be used once, more than once, or not at all. b. I II c. a. Domain of f (x)  x  2 A. (,) d. b. Range of f (x)   4 B. 4,  c. Domain of f  x  x 2 1 C. 0, 2 e. d. Range of f  x  x 2 16 D. 0,  e. Domain of f (x)  E. 3, 3 f. f. Range of f (x)   2 F. , 3 g. Domain of f (x)  x  3 G. 1,  g. h. Range of f (x)  x  3 H. 2,  i. Domain of y  2x 2 h. j. Range of y  x 2  3 i. j. The graph shows the line that passes through the points (  3,  5) and (3,  2). Refer to it to answer Exercises 2–6. 2. What is the slope of the line? 2. 3. What is the distance between the two points shown? 3. 4. What are the coordinates of the midpoint of the segment 4. joining the two points? 5. Find the standard form of the equation of the line. 5. 6. Write the linear function defined by has this line as its graph. f (x)  ax  b that 6. 3 x  2 CHAPTER 2, FORM C Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant. 7. 7. 8. 8. 9. Suppose point P has coordinates 2 2,  5 . a. What is the equation of the vertical line through P? 9. a. b. What is the equation of the horizontal line through P? b. 10. Find the slope-intercept form of the equation of the line passing through (4, 2 ) and a. parallel to the graph of x  5 y  2; 4 b. perpendicular to the graph of x  5 y  2; 4 10. a. b. CHAPTER 2, FORM C  1 if x  2 Graph each relation. 11. 12. 13. f  x  1 x 1  2 2 f  x  □2x□  2 f  x  x 1 if x  2  11. 12. 13. CHAPTER 2, FORM C   14. Explain how the graph of y  3 x  4  2 can be obtained 14. from the graph of y  x . 15. Determine whether the graph of y  3x 2  7 is symmetric 15. a. with respect to b. a. the x-axis, c. b. the y-axis, c. the origin. Given f  x  3x 2  2 and g  x  4x  4, find each of the following. Simplify the expressions when possible. 16.  fg x 17.  g  f  x 16. 17. 18. 19. f (2) f  x  h  f  x h 18. 19. 20.  f  g0 20. 21.  f  2  g  21. 22.  f  g x 23.  f ∘ g  x 24.  g ∘ f  x 25.  g ∘ f 0 22. 23. 24. 25. CHAPTER 2, FORM D NAME x 3 x COLLEGE ALGEBRA AND TRIGONOMETRY DATE 1. Match the set described in Column I with the correct interval 1. a. notation from Column II. Choices in Column II may be used once, more than once, or not at all. b. I II c. a. Domain of f (x)  A. , 1 d. b. Range of f (x)  1 B. ,  c. Domain of f  x  x 2  25 C. 0, 2 e. d. Range of f  x  x 2 1 D. 0,  e. Domain of f (x)  E. 3, 3 f. f. Range of f (x)   2 F. 3,  g. Domain of f (x)  x  4 G. 1,  g. h. Range of f (x)  x  4 H. 4,  i. Domain of j. Range of y  2x 2 y  x 2  4 h. i. j. The graph shows the line that passes through the points (  7,  4) and (3,  2). Refer to it to answer Exercises 2–6. 2. What is the slope of the line? 2. 3. What is the distance between the two points shown? 3. 4. What are the coordinates of the midpoint of the segment 4. joining the two points? 5. Find the standard form of the equation of the line. 5. 6. Write the linear function defined by has this line as its graph. f (x)  ax  b that 6. x  1 3 x  2 CHAPTER 2, FORM D .  2x if x  0 Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant. 7. 7. 8. 8. Graph each relation. 9. 10. f  x  3  x 1 f  x  x if x  0  9. 10. CHAPTER 2, FORM D .   11. Suppose point P has coordinates 3, 2.1. a. What is the equation of the vertical line through P? 11. a. b. What is the equation of the horizontal line through P? b. 12. Find the slope-intercept form of the equation of the line passing through (1, 5 ) and a. parallel to the graph of x   3 y  5; 4 b. perpendicular to the graph of x   3 y  5; 4 12. a. b. 13. Find the slope of the line through points (11, 5 ) and ( 8 , 6). 13. from the graph of y  x. 14. Explain how the graph of y  3  2 can be obtained 14. from the graph of y  x. 15. Determine whether the graph of xy  4 is symmetric 15. a. with respect to b. a. the x-axis, c. b. the y-axis, c. the origin. Given f  x  2x 3  3x 1 and g  x  2x 1, find each of the following. Simplify the expressions when possible. 16.  f  g x 16. 17. 18. 19.  f   x  g  f 0 f  x  h  f  x h 17. 18. 19. 20.  g  f 0 21.  fg1 22.  f ∘ g  x 20. 21. 22. x  4 CHAPTER 2, FORM D . 23.  f ∘ g2 24.  g ∘ f  x 25.  g ∘ f 2 23. 24. 25. CHAPTER 2, FORM E NAME 70 3 26 202 COLLEGE ALGEBRA AND TRIGONOMETRY DATE Choose the best answer. 1a. Which of the following is the domain of f  x   x ? 1a. a. 0, 3 c. 3,  b. , 3 d. ,  1b. Which of the following is the range of f  x  x 2  49 ? 1b. a. 49,  c. 7, 7 b. 7,  d. 0,  1c. Which of the following is the domain of f  x  3 x  7 ? 1c. a. ,  c. 0,  b. , 6 d. 6,  1d. Which of the following is the range of f  x  x 1? 1d. a. 1,1 c. 0,  b. 0,1 d. 1, 1e. Which of the following is the domain of x  y 2 ? 1e. a. ,  c. 0,  b. 0,  d. , 0 The graph shows the line that passes through 5, 8 and 4, 3 . Refer to it to answer Exercises 2-6. 2. What is the slope of the line? 2. a.  13 7 c.  11 9 b. 11 9 d. 0 3. What is the distance between the two points shown? 3. a. b. 2 c. d. 5 122 CHAPTER 2, FORM E 71   4. What are the coordinates of the midpoint of the segment joining 4. the two points? a.   1 , 5 b.   9 , 11   2 2     2 2   c.   3 , 1  2 2 d. 1, 5 5. Find the standard form of the equation of the line. 5. a. 11x  9y  127 c. 11x  9y  17 b. 11x  9y  17 d. 11x  9 y  127 6. Find the standard form of the equation of the line. 6. a. f  x  11 x  17 b. 9 9 c. f  x  11 x  127 d. 9 9 f  x   11 x  17 9 9 f  x  11 x  127 9 9 Tell whether each graph is that of a function. Give the domain and range. 7. 7. a. Function; domain: 5, 7; range: 1, 3 b. Function; domain: ,  ; range: 1, 3 c. Function; domain: 1, 3; range: 5, 7 d. Not a function; domain: 5, 7; range: 1, 3 8. 8. a. Not a function; domain: ,  ; range: 2,  b. Not a function; domain: 5, 5 ; range: 3,  c. Function; domain: ,  ; range: 2,  d. Function; domain: ,  ; range: 3,  CHAPTER 2, FORM E 72 9. Suppose point P has coordinates 6,1 . 9. What is the equation of the horizontal line through P? a. x  6 c. x  1 b. y 1 d. y  6 10. Find the slope-intercept form of the equation of the line passing. 10. through 2, 5 perpendicular to the graph of y   1 x  19 . 8 4 a. y  8x  21 c. y  8x 13 b. y  1 x  3 3 d. y   1 x  3 3 Graph each function. 11. f  x  2 x 1  2 11. a. b. c. d. CHAPTER 2, FORM E 73   " "   1 12. c Ч f x  x " e 2 ff 12. a. b. c. d. 2 if x  2 13. f  x   1   2 x 1 if x  2 13. a. b. c. d. CHAPTER 2, FORM E 74 14. Explain how the graph of y  x  2  5 can be obtained from the 14. graph of y  x. a. Translate 2 unit to the right and 5 units up. b. Translate 2 unit to the right and 5 units down. c. Translate 2 unit to the left and 5 units up. d. Translate 2 unit to the left and 5 units down. 15. Determine the symmetries of the graph of the relation x 2  2xy  y 2  5. a. x-axis only b. y-axis only c. origin only d. x-axis, y-axis, and origin 15. Given f  x  5x  4 and g  x  x 2  3, find each of the following. Simplify the expressions when possible. 5     5     3     3   16.  fg x 16. a. x 3  4x 2 12 b. 5x 3  4x 2 15x 12 c. 5x 3  4x 2  3x 12 d. 5x 3  4x 2  5x 12 17.  g  f  x 17. a. x 2  5x  7 b. x 2  5x  7 c. x 2  5x 1 d. x 2  5x 1 18. The domain of g f 18. a.  , 4   4 ,   b.  , 5   5 ,     4     4   c.  , 1   1 ,   d. ,  19. f  x  h  f  x h 19. a. h b. 5 c. 5x  2h d. 5x  2h  4 20.  f  g1 a. 1 b. 5 20. c. 2 d. 5

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Inconnu
Cours
Inconnu

Infos sur le Document

Publié le
14 novembre 2023
Nombre de pages
511
Écrit en
2023/2024
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

Test Bank for Julien’s Primer of Drug Action
Thirteenth Edition

,COLLEGE ALGEBRA AND TRIGONOMETRY DATE

1. Match the set described in Column I with the correct interval 1. a.
notation from Column II. Choices in Column II may be used
once, more than once, or not at all. b.

I II c.

a. Domain of f (x)  x  3 A. (, ) d.
b. Range of f (x)  x 3 B. 3, 
c. Domain of f  x  x2 16 C. 0, 2 e.
d. Range of y  2x 2
D. 0, 
e. Domain of f (x)  3 x  2 E. 3, 3 f.
f. Range of f (x)  3
x 2 F. , 2
g. Domain of f (x)  x  2 G. 3,  g.
h. Range of f (x)  x  3 H. 7, 
i. Domain of y  2s 2
h.
j. Range of f  x  x2  7
i.

j.

The graph shows the line that passes through the points (  5,  3)
and (  1, 4). Refer to it to answer Exercises 2–6.




2. What is the slope of the line? 2.

3. What is the distance between the two points shown? 3.

4. What are the coordinates of the midpoint of the segment 4.
joining the two points?

5. Find the standard form of the equation of the line. 5.

6. Write the linear function defined by f (x)  ax  b that 6.
has this line as its graph.

, CHAPTER 2, FORM A
Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals
where it is increasing, decreasing, or constant.

7. 7.




8. 8.




2 3
9. Suppose point P has coordinates  , .
 5 7 

a. What is the equation of the vertical line through P? 9. a.
b. What is the equation of the horizontal line through P? b.


10. Find the slope-intercept form of the equation of the line passing
through (2, 5) and
a. parallel to the graph of y  4x  7; 10. a.

b. perpendicular to the graph of y  4x  7. b.



Graph each relation.

11. x  2 y  3  1 11.




55
.

, CHAPTER 2, FORM A

12. f  x   □ x□  2 12.




2x 1 if x  0
13. f  x   13.
3x
 1 if x0




1
14. Explain how the graph of y   x  3  5 can be obtained 14.
2
from the graph of y  x.

15. Determine whether the graph of 2x2  3y2  1 is symmetric 15. a.
with respect to b.

a. the x-axis, c.

b. the y-axis,

c. the origin.

Given f  x  x2  1 and g  x  2x 1, find each of the following. Simplify the expressions when possible.

16.  fg   x 16.

17.  f  g   x 17.

g
18. the domain of 18.
f



56
.
$10.29
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
akira11114684

Faites connaissance avec le vendeur

Seller avatar
akira11114684 Bournemouth University (London)
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
2
Membre depuis
2 année
Nombre de followers
0
Documents
79
Dernière vente
8 mois de cela

0.0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions