100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Queuing Problems

Rating
-
Sold
-
Pages
8
Uploaded on
02-11-2023
Written in
2023/2024

Uitleg aan de hand van veel voorbeelden! Onderwerpen die behandeld zijn: - M/M/1 Models - Flow Balance Equations - Equilibrium Formulas - M/M/1/c - Modelling Arrival & Service Processes - M/M/s - Finite Source Models

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Unknown
Uploaded on
November 2, 2023
Number of pages
8
Written in
2023/2024
Type
Summary

Subjects

Content preview

Julian Klep
OR Models for Pre-Master IEM
Winston Ch. 1, 3, 9, 15, 16, 18, 20
LECTURE 12 – QUEING

M/M/1

 𝜆 questions an hour
 𝜇 answers can be provided an hour
 𝜆 < 𝜇 → statistical equilibrium
 Little’s Law Stable equilibrium
o 𝐿=𝜆⋅𝑊
o L = average number of X
present in queuing system
o 𝜆 = average number of
arrivals entering the system
o 𝑊 = average time a
customer spends in the
system
 Due to steady state behavior
(equilibrium), the steady state
probability of I customers in the Dynamical / statistical equilibrium
system is denoted by 𝑃𝑖




GEOMETRIC SERIES PROOF OF THEOREM

 If 𝜌 < 1 → Σ 𝜌 =1+𝜌+𝜌 +𝜌 +⋯ =( )
 If 𝜌 < 1 → Σ 𝑗𝜌 = 𝜌 + 2𝜌 + 3𝜌 + ⋯ = ( )
 Thus;
o ∑ 𝜌 = , the formula holds for all 𝜌 (due to l’Hôpital’s rule)


 To proof theorem
o ∑ 𝑗𝜌 = ∑ 𝑗𝜌
o Σ 𝑗𝜌 = ∑ (𝑗 + 1)𝜌 − ∑ 𝜌
o Σ 𝑗𝜌 = ∑ 𝜌 − ∑ 𝜌 −1

o Σ 𝑗𝜌 = ∑ 𝜌 − ( )
+1

o ∑ 𝑗𝜌 = 𝜌∑ 𝜌 −( )
+1
( )
o Σ 𝑗𝜌 = ( )
−1−( )
+1
o Σ 𝑗𝜌 = ( )




49

, Julian Klep
OR Models for Pre-Master IEM
Winston Ch. 1, 3, 9, 15, 16, 18, 20
FLOW BALANCE EQUATIONS




 State transition diagram:
o 𝜆𝑃 = average number of transitions per hour from state n to state n + 1
o 𝜇𝑃 = average number of transitions per hour from state n to state n – 1
 Due to equilibrium, and successive substitution
o 𝜆𝑃 = 𝜇𝑃 → 𝑃 = 𝑃
 𝑃 = 𝜌𝑃
o 𝜆𝑃 = 𝜇𝑃 → 𝑃 = 𝑃
 𝑃 = 𝜌𝑃
 Substituting P1
 𝑃 = 𝜌 ⋅ (𝜌𝑃 )
 𝑃 =𝜌 𝑃
o 𝜆𝑃 = 𝜇𝑃
 𝜆𝜌 𝑃 = 𝜇𝑃
 𝑃 =𝜌 𝑃
o Etc.
 In general, we state
o (𝜆 + 𝜇)𝑃 = 𝜆𝑃 + 𝜇𝑃
 𝑃 = 𝜌 𝑃 (𝑖 = 1, 2, … )
 Sum of all probabilities should equal 1, using above formula we get
o 1=∑ 𝑃
o 1=𝑃 ⋅Σ 𝜌 → (Σ 𝜌 = , 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑒𝑟𝑖𝑒𝑠 𝑝𝑎𝑔𝑒 46)

o 1=
o 𝑃 = 1−𝜌
 In general (Important)
o 𝑃 = 𝑃 ⋅ 𝜌 = (𝟏 − 𝒑)𝝆𝒊 (𝑖 = 0, 1, … )
 Utilization 𝜌
o 𝝆 = 𝟏 − 𝑷𝟎




50
$3.58
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
julian19

Get to know the seller

Seller avatar
julian19 Universiteit Twente
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
6
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions