100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Oefententamen Inleiding Logica + Antwoorden

Rating
-
Sold
-
Pages
6
Grade
9-10
Uploaded on
25-10-2023
Written in
2022/2023

Oefententamen Inleiding Logica voor Kunstmatige Intelligentie en Informatiekunde.

Institution
Module









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
October 25, 2023
Number of pages
6
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Opgave 1 (a) (2 punten voor een leuk plaatje)

(1) 2


(3)

(b) 1 punt voor het juiste antwoord, 1 punt voor de vertaling in het Nederlands, 1 punt voor de
toelichting.
(i) De formule zegt dat R reflexief is (vanuit elk punt is er een lus terug naar dat punt). Deze
uitspraak is onwaar, omdat h2, 2i 6∈ R (en dus is er vanuit 2 geen lus terug naar 2).
(ii) De formule zegt dat er een pijl te vinden is tussen twee verschillende punten die beide
omcirkeld zijn (de eigenschap A hebben). Dit is waar, want 1 and 3 zijn omcirkeld (hebben
de eigenschap A) en er is een pijl van 1 naar 3 (h1, 3i ∈ R).
(iii) De formule zegt dat vanuit ieder punt van waaruit er een pijl vertrekt naar een ander punt
omcirkeld is (de eigenschap A heeft). Dit is onwaar, want 2 is niet omcirkeld (heeft niet de
eigenschap A) en er is een pijl van 2 naar 3.
(iv) De formule zegt dat er een uniek punt is dat vanuit alle punten bereikbaar is. Deze uitspraak
is waar, want 3 is vanuit elk ander punt bereikbaar (h1, 3i, h2, 3i, h3, 3i ∈ R), maar de punten
1 en 2 zijn dat niet (bv. h2, 1i 6∈ R and 1, 2i 6∈ R).

Opgave 2 3 punten per antwoord. Meerdere antwoorden mogelijk!
(a) S(z, p).

(b) ∀x B(x) → ∃y S(x, y) .

(c) ∀x x = z ↔ S(x, p) .

(d) ∀x B(x) ∧ ¬x = z → ∃u ∃v (S(x, u) ∧ S(x, v) ∧ ¬u = v) . Als je van mening bent dat de zin
impliceert dat de zangeres niet meer dan één instrument speelt (verdedigbaar, denk ik), dan
moet de vertaling iets zijn als: ∀x B(x) → (¬x = z) ↔ ∃u ∃v ( S(x, u) ∧ S(x, v) ∧ ¬u = v ) .

Opgave 3 4 punten per goed antwoord. Meerdere goede antwoorden mogelijk!
(i) Model A: ¬β ∧ ¬γ (zie onder)
(ii) Model B: β := ∀x ¬R(x, x)
(iii) Model C: γ := ¬∃x ∃y ( R(x, y) ∧ ¬x = y )

Opgave 4 6 punten per onderdeel (4 punten voor het model, 2 voor de toelichting). Meerdere goede
antwoorden mogelijk!
(a) D = {1, 2}, met I(P ) = ∅, I(Q) = {1} and I(c) = 2. In dit model is ∃x (P (x) ∨ Q(x)) waar,
omdat er een element is met de eigenschap Q (namelijk 1); verder is ook ∀x ¬P (x) waar, omdat
geen enkel element de eigenschap P heeft (I(P ) = ∅). Maar Q(c) is niet waar, want het element
dat c interpreteert (namelijk 2) heeft niet de eigenschap Q (2 6∈ I(Q)).
(b) D = {1, 2} met I(R) = {h1, 1i, h2, 2i} en I(f ) = {h1, 2i, h2, 1i (omgekeerd kan ook). In dit model
is ∀x ∃y R(x, y) waar, omdat elk element gerelateerd is aan iets (namelijk zichzelf). Daarnaast
is geen enkel element x gerelateerd aan f (x) (omdat h1, 2i 6∈ R en h2, 1i 6∈ R).


1

, Opgave 5 Natuurlijke deductie: 7 punten per onderdeel.
(a)
1. ∀x (P (x) → Q(x) ) ass
2. ∀x ( Q(x) → R(x) ) ass
3. u ass
4. P (u) ass
5. P (u) → Q(u) G∀, 1
6. Q(u) G→, 4, 5
7. Q(u) → R(u) G∀, 2
8. R(u) G→, 6, 7
9. P (u) → R(u) I→, 4––8
10. ∀x ( P (x) → R(x) ) I∀, 3––9

(b)
1. ∃x ( P (x) → ∀y Q(y) ) ass
2. u P (u) → ∀y Q(y) ass
3. v ass
4. P (u) ass
5. ∀y Q(y) G→, 2, 4
6. Q(v) G∀, 5
7. P (u) → Q(v) I→, 4––6
8. ∀y ( P (u) → Q(y) ) I∀, 3––7
9. ∃x ∀y ( P (x) → Q(y) ) I∃, 8
10. ∃x ∀y ( P (x) → Q(y) ) G∃, 1, 2––9




2
$5.91
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
StudentInformatiekunde

Get to know the seller

Seller avatar
StudentInformatiekunde Universiteit van Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
5
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions