100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

2.2C International Bachelor of Psychology Statistics II summary

Beoordeling
-
Verkocht
1
Pagina's
88
Geüpload op
16-10-2023
Geschreven in
2022/2023

In depth summary of bookchapters, study material and lectures of second year Statistics course. I got a 9.6 for the exam.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
16 oktober 2023
Aantal pagina's
88
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

MMC Chapter 8: Proportions



➔ Binomial distribution review from 1.3
◆ Conditions:
● Fixed number of observations n
● n observations are all independent
● Each observation falls into one of the two categories “success” or
“failure”
● Probability of success (p) is the same for all observations
◆ Examples: coin toss, yes/no survey
◆ B(n,p)
◆ Binomial distributions are important when we want to make inferences about
the proportion p of successes in a population
◆ Generally, we use binomial sampling distribution for counts when the population
is at least 20 times as large as the sample
◆ If a count X has the binomial distribution B(n,p), then:




◆ the count X has a binomial distribution, not the p^ !!
_____________

8.1 Inference for a single proportion

➔ we record counts or proportions when we collect data about a categorical variable from
a population
➔ we draw a simple random sample (SRS) from the population
➔ the sample proportion p^= X/n estimates the unknown population proportion p
➔ if the population is at least 20 times as large as the sample, then the count X has a
binomial distribution B(n,p)
➔ When the sample size n sufficiently large, the sampling distribution of p^ is


approximately normal with mean and standard deviation

,➔ however, we don’t know the population proportion p, so we have to replace it with p^---
now it’s called standard error




➔ We use the large-sample confidence interval for 90%, 95%, and 99% confidence
whenever the number of successes and the number of failures are both at least 10.
➔ For smaller sample sizes, we recommend exact methods that use the binomial
distribution.
➔ There is also an intermediate case between large samples and very small samples where
a slight modification of the large-sample approach works quite well. This method is
called the “plus four” procedure:
➔ We add 4 observations to the sample, with 2 successes and 2 failures




➔ Significance test for a single proportion:
◆ distribution of sample proportion p^ is appx. normal— to construct confidence
intervals, we substitute p^ in place of pto obtain the standard error (and use it
for margin or error)
◆ however in significance testing, we assume that the value given by null
hypothesis for p is true H0: p=p0

, ◆
◆ In problems like which product is better etc., two-died tests should be used
because we cannot make a scientific claim on the superiority of one product over
another (for advertising purposes etc.)
◆ we often don’t conduct sig tests for a single proportion because there is often
not a single p0 we want to test— i.g. coin tossing, drawing cards, proportions
from previous studies etc. could provide p0

➔ choosing a sample size for confidence interval:



◆ we aim to pick a specific sample size for our desired margin of error
◆ chosen confidence level determines the z-value
◆ we don’t know p^ yet bc we didn’t collect data yet:
● we can use p^ from a previous similar study
● we can take p^=0.5, because the margin of error is largest in this case and
it will generate n larger than we actually need (safe choice)
◆ then, we can calculate n

, 8.2 Comparing two proportions

➔ now we compare two proportions from 2 populations




➔ the difference between 2 sample proportions: D=p^1-p^2
➔ when both sample sizes are large, sampling distribution of the difference D is appx
normal

➔ mean of D: (addition rule for means)
➔ standard deviation of D:




➔ Confidence interval for a difference in proportions:

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
gg12121 Erasmus Universiteit Rotterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
29
Lid sinds
3 jaar
Aantal volgers
14
Documenten
17
Laatst verkocht
1 maand geleden

4.0

5 beoordelingen

5
3
4
0
3
1
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen