100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Complete exam material of Introduction to Time Series and Dynamic Econometrics, Bachelor Econometrics, Vrije Universiteit Amsterda,

Rating
-
Sold
4
Pages
26
Uploaded on
11-10-2023
Written in
2023/2024

Complete summary of the exam material for the course Introduction to Time Series and Dynamic Econometrics in the 3th year of the Bachelor of Econometrics at the Vrije Universiteit Amsterdam, or the minor Applied Econometrics. The summary is in English. All lectures are in the summary, with extra information on some more complex topics.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
October 11, 2023
Number of pages
26
Written in
2023/2024
Type
Class notes
Professor(s)
K. moussa
Contains
All classes

Subjects

Content preview

Introduction to Time Series and Dynamic
Econometrics
Charlotte Hoogteijling
October2023


Contents
0 Preparatory Notes 3
0.1 Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 Law of Total Expectation . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Geometric series . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Basic Properties of Time Series 4
1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Strict and weak stationarity . . . . . . . . . . . . . . . . . . . . . 4
1.3 Unconditional and conditional moments . . . . . . . . . . . . . . 5
1.4 Sample moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Autocorrelation function (ACF) . . . . . . . . . . . . . . . . . . . 5
1.6 White Noise (WN) and Random Walk (RW) processes . . . . . . 6
1.7 Sources of non-stationarity . . . . . . . . . . . . . . . . . . . . . 6
1.8 Lag and difference operator . . . . . . . . . . . . . . . . . . . . . 6
1.9 Wold decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.10 Linear process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Properties of ARMA Models 9
2.1 Autoregressive moving-average (ARMA) model . . . . . . . . . . 9
2.1.1 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 MA(∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 AR(∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Autoregressive (AR) model . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Moments of stable AR(p) process . . . . . . . . . . . . . . 11
2.3 Moving average (MA) model . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Moments of MA(q) process . . . . . . . . . . . . . . . . . 12
2.4 Extra notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12




1

,3 Estimation and Specification of ARMA Models 13
3.1 ARMA coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Maximum likelihood estimator (MLE) . . . . . . . . . . . . . . . 13
3.3 Multivariate normal likelihood of ARMA model . . . . . . . . . . 13
3.3.1 Variance-covariance matrix of AR(1) . . . . . . . . . . . . 14
3.4 Prediction error decomposition of ARMA likelihood . . . . . . . 14
3.4.1 Likelihood function of AR(1) . . . . . . . . . . . . . . . . 15
3.4.2 MLE of an AR(1) with NID(0, 1) innovations . . . . . . . 15
3.5 Least Squares Estimator (LSE) . . . . . . . . . . . . . . . . . . . 15
3.5.1 MLE and LSE properties . . . . . . . . . . . . . . . . . . 15
3.6 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Forecasting ARM A(p, q) processes . . . . . . . . . . . . . . . . . 16
3.7.1 Confidence interval for X̂T +h . . . . . . . . . . . . . . . . 17
3.7.2 Optimal forecast under quadratic loss . . . . . . . . . . . 17

4 Autoregressive distributed lag and error correction models 18
4.1 Various models of this course . . . . . . . . . . . . . . . . . . . . 18
4.1.1 Box-Jenkins approach to modeling time series . . . . . . . 18
4.1.2 Structural models . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Statistical (reduced form) models . . . . . . . . . . . . . . 18
4.2 Autoregressive distributed lag model (ADL) . . . . . . . . . . . . 18
4.3 Long and short run multipliers . . . . . . . . . . . . . . . . . . . 19
4.4 Forecasting with ADL(1,1): triangular System . . . . . . . . . . 19
4.5 Impulse response function (IRF) . . . . . . . . . . . . . . . . . . 20
4.6 Error correction model (ECM) . . . . . . . . . . . . . . . . . . . 20

5 Spurious regression unit-roots 21
5.1 Spurious regression problem . . . . . . . . . . . . . . . . . . . . . 21
5.2 Dickey Fuller (DF) test . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.1 Augmented Dickey-Fuller (ADF) - AR(p) . . . . . . . . . 22
5.2.2 ADF General-to-specific (G2S) . . . . . . . . . . . . . . . 22
5.3 Extra notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Cointegration and Granger causality 24
6.1 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.1 Cointegration tests . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Modeling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.1 Estimation based on ECM . . . . . . . . . . . . . . . . . . 26
6.2.2 Engle and Granger 2-step procedure . . . . . . . . . . . . 26
This document contains the contents of the lecture slides and notes. The expla-
nations are summarized. To understand the properties of the definitions, proofs,
and formulas, it is recommended to derive the formulas yourself.




2

, 0 Preparatory Notes
0.1 Mean
If X and Y are independent of each other.


E(XY ) = E(X)E(Y )

0.2 Law of Total Expectation
We can find the expected value of a variable X by considering all different
scenarios A under which X can occur.


E(X) = E(E(X | Y ))
= P (A1 )E(X | A1 ) + · · · + P (An )E(X | An )



0.3 Geometric series
P∞
A geometric series is a sum of the type i=0 ri = 1 + r + r2 + . . . .
• If r < 1, the series will converge to 1
1−r .

• If r = 1, the terms in the series will oscillate (positive-negative).
• If r > 1, the series will diverges (goes to infinity).

0.4 Notes
• The joint probability density function (joint pdf) is a function used to
characterize the probability distribution of a continuous random vector.
• The covariance is a measure of joint variability of two random variables.
It measures the directional relationship.




3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
charhoog Universiteit van Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
11
Member since
2 year
Number of followers
6
Documents
12
Last sold
6 months ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions