Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary of Statistical methods for Business and Economics (Chapter 5-19, chapter 18 excluded)

Vendu
8
Pages
49
Publié le
11-10-2017
Écrit en
2017/2018

Summary of the book Statistical methods for Business and Economics (Gert Nieuwenhuis) chapter 5-19 and lecture slides for the course ''Statistics for premaster'' (2017). Includes explanations in both English and Dutch. Excluded: 10.2 12.3 Chebyshev Hypergeometric distribution (part of chapter 9) Conditional distributions and Poisson-distributions (part of chapter 11) Chapter 18 Everything is included needed for the midterm Statistics for premaster.

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
H1 t/m h19, exclusief h18
Publié le
11 octobre 2017
Fichier mis à jour le
12 novembre 2017
Nombre de pages
49
Écrit en
2017/2018
Type
Resume

Sujets

Aperçu du contenu

Statistiek Summary chapter 5-19
Lecture: Statistics for pre-master. Year: 2017.

Inhoud
Chapter 5 ....................................................................................................................................................... 2
Chapter 6 ....................................................................................................................................................... 8
Chapter 7 ..................................................................................................................................................... 10
Chapter 8 ..................................................................................................................................................... 12
Chapter 9 ..................................................................................................................................................... 17
Chapter 10 ................................................................................................................................................... 18
Chapter 11 ................................................................................................................................................... 21
Chapter 12 ................................................................................................................................................... 24
Chapter 13 ................................................................................................................................................... 26
Chapter 14 ................................................................................................................................................... 27
Chapter 15 ................................................................................................................................................... 28
Chapter 16 ................................................................................................................................................... 32
Chapter 17 ................................................................................................................................................... 36




1

,Chapter 5
Wetenschappelijke benamingen:
(𝒙𝟏 , 𝒚𝟏 ), (𝒙𝟐 𝒚𝟐 ), … … , (𝒙𝑵 𝒚𝑵 ): population dataset
(𝒙𝟏 , 𝒚𝟏 ), (𝒙𝟐 𝒚𝟐 ), … … , (𝒙𝒏 𝒚𝒏 ): sample dataset.
𝝈𝒙,𝒚 : population covariance
𝒔𝒙,𝒚 : sample covariance
𝝈𝟐𝒙 : population variance
𝒔𝟐𝒙 : sample variance
𝝆 (𝒐𝒓 𝝆𝑿,𝒀 ): population correlation coefficient
𝒓 (𝒐𝒓 𝒓𝑿,𝒀 ): sample correlation coefficient
𝒃𝟎 𝒂𝒏𝒅 𝒃𝟏 : sample regression coefficients.
𝜷𝟎 𝒂𝒏𝒅 𝜷𝟏 : population regression coefficients.
𝛃𝟎 𝐨𝐫 𝐛𝟎: intercept
𝛃𝟏 𝐨𝐫 𝐛𝟏: slope
𝐲̂: prediction line

In this chapter one of the following three primary objectives is aimed at (depending on problem of
interest)
1. Positioning the population elements with respect to each other by comparing the datasets of
two variables.
2. Studying the combined relationship of X and Y with time(if the datasets are time series)
3. Studying the dependence of the data of one variable on the data of the other variable.
The most attention will be paid at situation 3.

5.1 Scatter plot, covariance and correlation
The dependent variable is denoted as Y and de independent variable is denoted as X. Research is aimed
at finding out whether Y is related to X. For example is the GDP(Y) related to the inflation rate(X)?
To get an impression of the way the y data depend on the
corresponding x data, one constructs a scatter plot of y on x (=one
puts the n pairs of data into a 2D system of axes, where the horizontal
x-axis refers to the independent variable and the vertical y-axis refers
to the dependent variable.) See image ->
In the x, y plane, a cloud of dots results, this is called a population
cloud or a sample cloud.
Y and x are positively linearly related when there is an increasing
straight line, y and x are negatively linearly related if there is a
decreasing straight line.
X and y have a quadratic relationship when the curve is a mountain-
shaped parabolic (first increases and then declines). See image->

Focus in this chapter will be on the linear relationship between two
variables.
Population dataset: (𝑥1 , 𝑦1 ), (𝑥2 𝑦2 ), … … , (𝑥𝑁 𝑦𝑁 )
Sample dataset: (𝑥1 , 𝑦1 ), (𝑥2 𝑦2 ), … … , (𝑥𝑛 𝑦𝑛 )
We want the so called measures of association, that measures the strength
of the linear relationship.


2

,Population covariance (𝜎𝑥,𝑦 ):
N
1
𝜎𝑥,𝑦 = ∑(xi − μy )
N
i=1

Sample covariance (𝑠𝑥,𝑦 ):
N
1
𝑠𝑥,𝑦 = ∑(xi − x̅) (yi − y̅)
n−1
i=1
𝑠𝑥,𝑦 is often used as estimate of the unknown 𝜎𝑥,𝑦 .


Population variance:
𝜎𝑥,𝑥 = 𝜎𝑥2
Sample variance:

𝑠𝑥,𝑥 = 𝑠𝑥2

For example:
In this example the 𝑠𝑥2 , 𝑠𝑦2 𝑎𝑛𝑑 𝑠𝑥,𝑦 can
be calculated.
1 46
𝑠𝑥2 = × 46 =
(13 − 1) (13 − 1)
75.08
𝑠𝑥2 =
(13 − 1)
26
𝑠𝑥,𝑦 =
(13 − 1)




The statistic correlation coefficient is a measure of linear relationship that does not have the following
disadvantages that the covariance has:
 The covariance is not immediately suitable to measure the strength of a linear relationship (it
does not reflect whether it is a strong or weak linear relationship, because a reference point is
missing)
 The covariance depends on the dimensions (the unit in which the variables are measured), for
example the unit 106 euro.

The sample correlation coefficient r (or 𝑟𝑋,𝑌 ) is defined as the ratio of the sample covariance and the
product of the two sample standard deviations.
𝑠𝑋,𝑌
𝑟 = 𝑟𝑋,𝑌 =
𝑠𝑋 𝑠𝑌
The population correlation coefficient 𝜌 (𝑜𝑟 𝜌𝑋,𝑌 ) is defined as the ratio of the population covariance
and the product of the two population standard deviations.

3

, 𝜎𝑋,𝑌
𝜌 = 𝜌𝑋,𝑌 =
𝜎𝑋 𝜎𝑌


The standard deviations can be calculated by √𝑠𝑥2 or √𝜎𝑥2 (de wortel nemen van de variantie).

Properties of correlation coefficients
 Can never be larger than +1 or smaller than -1.
 +1 means that all pairs of x and y fall precisely on one increasing straight line.
 -1 means that all pairs of x and y fall precisely on one decreasing straight line.
 0 Means that x and y are uncorrelated.
 Correlation only measures linear dependence between Y and X, there still can exist another
relationship such as the quadratic one.

5.2 Regression line
Regression of Y on X: how Y depends on X.
Least-squares method: determines the constants a and b such that the sum of the squared deviations is
as small as possible. For example y = bo + b1 x. To determine bo and b1 the least-squares method is
used.
The vertical deviations, also called errors or residuals are (see arrow on image below):
𝑦1 − (𝑏𝑜 + 𝑏1 𝑥1 ), 𝑦2 − (𝑏𝑜 + 𝑏1 𝑥2 ), … . , (𝑏𝑜 + 𝑏1 𝑥𝑛 )
The sum of these squared deviations, have to be minimal and that is what the least-squares method
calculates.
𝑛

∑(𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖 ))2
𝑖=1




This LS method yields the optimal constants denoted by 𝑏0 𝑎𝑛𝑑 𝑏1 and are called sample regression
coefficients. The constants denoted by 𝛽0 𝑎𝑛𝑑 𝛽1 are called population regression coefficients.
sX,Y
b1 = 2 and b0 = y̅ − b1 x̅
sX
σX,Y
β1 = 2 and β0 = μy − β1 μx
σX

Sample regression line

4
$7.79
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les avis
7 année de cela

4.0

1 revues

5
0
4
1
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Annevdboogaert Tilburg University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
44
Membre depuis
8 année
Nombre de followers
42
Documents
7
Dernière vente
1 année de cela

3.8

11 revues

5
2
4
6
3
2
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions