100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

ejercicio mecanica del medio continuo

Rating
-
Sold
-
Pages
2
Grade
10 (Matrícula de Hon
Uploaded on
10-09-2023
Written in
2023/2024

Estos ejercicios son como ventanas a un mundo de conocimientos que te ayudarán a comprender mejor cómo se comportan los materiales y las estructuras en situaciones reales. Cada ejercicio viene con una explicación detallada y paso a paso de cómo abordar y resolver los desafíos, lo que te permitirá desarrollar una comprensión sólida de los principios fundamentales.

Show more Read less
Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 10, 2023
Number of pages
2
Written in
2023/2024
Type
Exam (elaborations)
Contains
Only questions

Subjects

Content preview

Ejercicio resuelto

referencia de ejercicio: J.N Reddy, An introduction to continum mechanics,
pag 205, ejercicio 4.8.

4.8 Las componentes del tensor de tensiones de Cauchy en un punto P en el
cuerpo deformado con respecto al sistema de coordenadas estan (x1 , x2 , x3 )
dadas por:
 
1 4 −2
[σ] =  4 0 0  M P a
−2 0 3
a) Determinar el vector de tensiones de Cauchy tn̂ en el punto P de un plano
que pasa por el punto y paralelo al plano 2x1 + 3x2 + x3 = 4
b) Encuentre la longitud de tn̂ y el angulo entre tn̂ y el vector normal al
plano.
c)Determine las componentes del tensor de tensiones de Cauchy en un sistema
de coordenadas rectangulares (x1 , x2 , x3 ) cuyos vectores base ortonormales ēˆi
estan dados en terminos de los vectores base êi del sistema de coordenadas
(x1 , x2 , x3 )
1 1
ê2 = √ (ê1 − ê3 ), ēˆ3 = (2ê1 − ê2 − ê3 )
2 3

a) el vector normal al plano 2x1 + 3x2 + x3 = 4


donde la normal esta dada por
▽f
n̂ =
| ▽ f|
1
n̂ = √ (2ê1 + 3ê2 + ê3 )
12
    
1 4 −2 2 12
1 1  
t = √ =  4 0 0  3 = √ 8 MP a
14 −2 0 3 1 14 −1
 

el vector de tensiones resultantes es:

1
t(n̂) = √ (12ê1 + 8ê2 − ê3 )M P a
14
b) Encuentre la longitud de tn̂ y el angulo entre tn̂ y el vector normal al plano

la longitud del vector t(n̂)
s
12 8 1
t(n̂) = ( √ )2 + ( √ )2 + ( √ )2
14 14 14



t = 3,86M P a
$6.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
chowigonzlez

Get to know the seller

Seller avatar
chowigonzlez IE University
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
12
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions