MAT2613 EXAM PACK 2023
QUESTIONS
AND ANSWERS
For assignment help or inquiries
Email:
WhatsApp: +254704997747
,MAT2613
EXAM PACK
Revision PACK
Questions. Answers
, 3
I OCTOBER/NOVEMBER )0/7EXAMINATION PAPER AND MEMORANDUM I
QUESTION l
1.1 Use a proof by contradiction to prove that the following statement is true.
2n ;::: 2n for all positive integers n.
[Hint: You may assume the well ordering axiom: Every non-empty set of positive integers has a least
Open Rubric
~~] 00
SOLUTION
Contradiction: There exist at least one positive integer m such that 2m < 2m.
Assumption false for m =
1 and m =
2. The statement must then be: There exist at least one positive integer
m > 2 such that 2m <2m.
Let M = (m lm > 2, m EN, 2m < 2m}. This set M bas a least element by the well·ordening axiom.
Let mo be this element. Then mo > 2 and 2mo < 2m 0 (1)
However, mo - 1 < mo and mo- 1 ¢ M, so 2<mo-l) ;::: 2 (mo- 1) (2)
and so from (1) and (2) we have since (2) is 2mo ;::: 4m0 - 4 that 4m0 - 4 ~ 2mo < 2m0 , i.e 2m0 < 4 or m0 < 2
which is a contradiction.
1.2 Give the contrapositive of the following statement:
00
If L, Or is convergent then (an) is a null sequence. (2)
rei
[10]
SOLUTION
00
If (an) is not a null sequence then L:ar is divergent.
r•l
QUESTION%
Let (an) be the sequence of real numbers defined by a 1 = I and an+l = ,JiCi;,for n EN.
Show that (an) converges and find the limit.
[Hint: Show that 1 ~an < an+l < 2 for all n EN using mathematical induction.] f81
SOLUTION
a1 = 1 and On+1 = -J24,'if n .
Following the hint we have to prove that 1 < an+2 < 2 'if n. (*)
~ an
For n = 1 we have a 1 = 1 ami a 2 = ,J2 thus (*) is true for n = I.
Suppose(*) is true for n = k, i.e 1 ~ at < ak+l < 2 (**)
Then we have from(**) that 2 ~ 2ak < 2aA:+1 < 4 so that ,J2 ~ ,J2iii < ~ < 2.
t
Open Rubric
, 4
But
A - ak+l and J2ak+l = ak+2
so 1 < .J2 ~ ak+l < ak+2 < 2 and the equation (**)is true.
We thus have an increasing sequence which is bounded above by 2.
Suppose
lim an
n-too
= L. Then also lim an+I
11--tOO
= L
We have
lim an+ 1 lim .J2ci:, = Jlim 2an
= n-too
11--too n-too
L = .fi-JI i.e -Jl = v'2 or L =2.
QUESTION3
Prove from first principles that the sequence (an) with
2n 2 +5
a1 = 0, an = ., when n ?: 2
n-- 1
converges. (7)
SOLUTION
2n 2 + 5 2 + 2..
.
We suspect that lrm an
n-too
= .
lun
11--tOO n 2 - 1
= lim ~ =2
n-too ( - ~
'-"
/
Let c > 0 be given. For n :;::: 2 we have
Since
> n when n :;::: 2 we have
lan- 21
7 7/
- -- < - for n > 2
n -l-n
2 -
Clearly
7 7
-<e~n>
n e
By the Archimedean principle there exists ;:: N with N > ~.
f:
For such an N e N we have
• 7 7
n 2: N => n > - => lan - 21 < - < c
e n
QUESTIONS
AND ANSWERS
For assignment help or inquiries
Email:
WhatsApp: +254704997747
,MAT2613
EXAM PACK
Revision PACK
Questions. Answers
, 3
I OCTOBER/NOVEMBER )0/7EXAMINATION PAPER AND MEMORANDUM I
QUESTION l
1.1 Use a proof by contradiction to prove that the following statement is true.
2n ;::: 2n for all positive integers n.
[Hint: You may assume the well ordering axiom: Every non-empty set of positive integers has a least
Open Rubric
~~] 00
SOLUTION
Contradiction: There exist at least one positive integer m such that 2m < 2m.
Assumption false for m =
1 and m =
2. The statement must then be: There exist at least one positive integer
m > 2 such that 2m <2m.
Let M = (m lm > 2, m EN, 2m < 2m}. This set M bas a least element by the well·ordening axiom.
Let mo be this element. Then mo > 2 and 2mo < 2m 0 (1)
However, mo - 1 < mo and mo- 1 ¢ M, so 2<mo-l) ;::: 2 (mo- 1) (2)
and so from (1) and (2) we have since (2) is 2mo ;::: 4m0 - 4 that 4m0 - 4 ~ 2mo < 2m0 , i.e 2m0 < 4 or m0 < 2
which is a contradiction.
1.2 Give the contrapositive of the following statement:
00
If L, Or is convergent then (an) is a null sequence. (2)
rei
[10]
SOLUTION
00
If (an) is not a null sequence then L:ar is divergent.
r•l
QUESTION%
Let (an) be the sequence of real numbers defined by a 1 = I and an+l = ,JiCi;,for n EN.
Show that (an) converges and find the limit.
[Hint: Show that 1 ~an < an+l < 2 for all n EN using mathematical induction.] f81
SOLUTION
a1 = 1 and On+1 = -J24,'if n .
Following the hint we have to prove that 1 < an+2 < 2 'if n. (*)
~ an
For n = 1 we have a 1 = 1 ami a 2 = ,J2 thus (*) is true for n = I.
Suppose(*) is true for n = k, i.e 1 ~ at < ak+l < 2 (**)
Then we have from(**) that 2 ~ 2ak < 2aA:+1 < 4 so that ,J2 ~ ,J2iii < ~ < 2.
t
Open Rubric
, 4
But
A - ak+l and J2ak+l = ak+2
so 1 < .J2 ~ ak+l < ak+2 < 2 and the equation (**)is true.
We thus have an increasing sequence which is bounded above by 2.
Suppose
lim an
n-too
= L. Then also lim an+I
11--tOO
= L
We have
lim an+ 1 lim .J2ci:, = Jlim 2an
= n-too
11--too n-too
L = .fi-JI i.e -Jl = v'2 or L =2.
QUESTION3
Prove from first principles that the sequence (an) with
2n 2 +5
a1 = 0, an = ., when n ?: 2
n-- 1
converges. (7)
SOLUTION
2n 2 + 5 2 + 2..
.
We suspect that lrm an
n-too
= .
lun
11--tOO n 2 - 1
= lim ~ =2
n-too ( - ~
'-"
/
Let c > 0 be given. For n :;::: 2 we have
Since
> n when n :;::: 2 we have
lan- 21
7 7/
- -- < - for n > 2
n -l-n
2 -
Clearly
7 7
-<e~n>
n e
By the Archimedean principle there exists ;:: N with N > ~.
f:
For such an N e N we have
• 7 7
n 2: N => n > - => lan - 21 < - < c
e n