100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

MAT2613 EXAM PACK 2023

Rating
-
Sold
-
Pages
107
Grade
A+
Uploaded on
06-09-2023
Written in
2023/2024

latest questions and elaborate answers

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
September 6, 2023
Number of pages
107
Written in
2023/2024
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

MAT2613 EXAM PACK 2023


QUESTIONS
AND ANSWERS



For assignment help or inquiries
Email:
WhatsApp: +254704997747

,MAT2613
EXAM PACK




Revision PACK
Questions. Answers

, 3



I OCTOBER/NOVEMBER )0/7EXAMINATION PAPER AND MEMORANDUM I

QUESTION l

1.1 Use a proof by contradiction to prove that the following statement is true.

2n ;::: 2n for all positive integers n.

[Hint: You may assume the well ordering axiom: Every non-empty set of positive integers has a least
Open Rubric




~~] 00

SOLUTION
Contradiction: There exist at least one positive integer m such that 2m < 2m.
Assumption false for m =
1 and m =
2. The statement must then be: There exist at least one positive integer
m > 2 such that 2m <2m.
Let M = (m lm > 2, m EN, 2m < 2m}. This set M bas a least element by the well·ordening axiom.
Let mo be this element. Then mo > 2 and 2mo < 2m 0 (1)
However, mo - 1 < mo and mo- 1 ¢ M, so 2<mo-l) ;::: 2 (mo- 1) (2)
and so from (1) and (2) we have since (2) is 2mo ;::: 4m0 - 4 that 4m0 - 4 ~ 2mo < 2m0 , i.e 2m0 < 4 or m0 < 2
which is a contradiction.

1.2 Give the contrapositive of the following statement:
00

If L, Or is convergent then (an) is a null sequence. (2)
rei


[10]
SOLUTION
00
If (an) is not a null sequence then L:ar is divergent.
r•l



QUESTION%

Let (an) be the sequence of real numbers defined by a 1 = I and an+l = ,JiCi;,for n EN.
Show that (an) converges and find the limit.
[Hint: Show that 1 ~an < an+l < 2 for all n EN using mathematical induction.] f81

SOLUTION
a1 = 1 and On+1 = -J24,'if n .
Following the hint we have to prove that 1 < an+2 < 2 'if n. (*)
~ an
For n = 1 we have a 1 = 1 ami a 2 = ,J2 thus (*) is true for n = I.
Suppose(*) is true for n = k, i.e 1 ~ at < ak+l < 2 (**)
Then we have from(**) that 2 ~ 2ak < 2aA:+1 < 4 so that ,J2 ~ ,J2iii < ~ < 2.

t
Open Rubric

, 4


But

A - ak+l and J2ak+l = ak+2

so 1 < .J2 ~ ak+l < ak+2 < 2 and the equation (**)is true.

We thus have an increasing sequence which is bounded above by 2.

Suppose
lim an
n-too
= L. Then also lim an+I
11--tOO
= L
We have
lim an+ 1 lim .J2ci:, = Jlim 2an
= n-too
11--too n-too




L = .fi-JI i.e -Jl = v'2 or L =2.
QUESTION3
Prove from first principles that the sequence (an) with

2n 2 +5
a1 = 0, an = ., when n ?: 2
n-- 1
converges. (7)
SOLUTION
2n 2 + 5 2 + 2..
.
We suspect that lrm an
n-too
= .
lun
11--tOO n 2 - 1
= lim ~ =2
n-too ( - ~
'-"
/



Let c > 0 be given. For n :;::: 2 we have




Since

> n when n :;::: 2 we have


lan- 21
7 7/
- -- < - for n > 2
n -l-n
2 -
Clearly
7 7
-<e~n>
n e
By the Archimedean principle there exists ;:: N with N > ~.
f:

For such an N e N we have
• 7 7
n 2: N => n > - => lan - 21 < - < c
e n

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
kymih University of South Africa (Unisa)
Follow You need to be logged in order to follow users or courses
Sold
72
Member since
2 year
Number of followers
56
Documents
240
Last sold
3 months ago

4.0

6 reviews

5
4
4
0
3
1
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions