100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Physics all chapter's notes for class 11. | Most important

Beoordeling
-
Verkocht
-
Pagina's
108
Geüpload op
03-09-2023
Geschreven in
2023/2024

"Comprehensive Class 11 Physics Chapter Notes":- Ace your physics exams with these meticulously crafted chapter notes! This set of notes covers all the essential topics from the Class 11 Physics syllabus. Each chapter is explained in a clear and concise manner, making it easy for students to grasp complex concepts. Whether you're preparing for your board exams or competitive entrance tests, these notes are your go-to resource for success. Download now and take your physics knowledge to the next level!

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Middelbare school
School jaar
1

Documentinformatie

Geüpload op
3 september 2023
Aantal pagina's
108
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Important notes for Class XI
Students
For CBSE / WBBSE Boards




Physic notes from
Chapter 1 to 25

, Wondershare
PDFelement

Physics HandBook CH APTER




TRI GONOMETRY

2 radian = 360°  1 rad = 57.3°
perpendic ular base perpendicular
sin   cos =  tan =
hypoten use hypoten use base
a 2+b 2
base hypotenus e hypoten use a
cot = sec = cosec  =
perpendi cular base perpendi cular

a b a b
sin = cos = tan  =
a 2  b2 2
a b 2 b
1 1 1
cosec  = sec = cot  =
sin  cos  tan 
sin 2  + cos 2  = 1 1 + tan 2  = sec 2  1 + cot 2  = cosec 2 
90°
sin(A±B) = sinAcosB  cosAsinB cos(A±B) = cosAcosB  sinAsinB II I

tan A  tan B S in All
tan A  B   sin2A = 2sinAcosA 0°
1  tan A tan B 180° 360°
cos2A = cos 2 A–sin 2 A = 1–2sin 2 A = 2c os 2 A–1 T an C os
2 tan A III IV
tan2 A  sin3  = 3sin  – 4sin 3 
1  tan 2 A EN 270°
cos3  = 4c os 3  – 3c os 2sinAsinB = cos(A–B) – cos(A+B)
2cosAcosB = cos(A–B) + cos(A+B) 2sinAcosB = sin(A+B) + sin(A–B)


0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
 (0) /6) /4) /3) /2) /3) /4) /6)  /2) )
1 1 3 3 1 1
LL
sin  0 1 0 1 0
2 2 2 2 2 2
3 1 1 1 1 3
cos  1 0    -1 0 1
2 2 2 2 2 2
1 1
tan  0 1 3   3 -1  0  0
3 3
A


sin (90 ° + ) = c os  sin (180° – ) = sin  sin (– = –sin  sin (90° – ) = cos 
cos (90°+ ) = –sin  cos (180° – ) =– cos  cos (–) = cos  cs 90° – ) = sin 
tan (90°+ ) =– cot  tan(180°– ) =– tan  tan (–) = – tan  tan(90°– ) = cot 

sin (18 0° + ) = – sin  sin (270°– ) = – cos  sin (27 0°+ ) = – cos  sin (360°– ) = – sin 
cos (180° + ) = – cos  cos(270° – )= – sin  cos (270° + ) = sin  cos (360° – ) = cos 
tan (180° + ) = tan  tan (270° – ) = cot  tan (270° + ) = – cot  tan (360° – ) = – tan 


A
sine law For smal l 
A sin   cos   1 tan    sin  tan 
c b
sin A sinB sinC
 
B C
a b c
B C
a

cosine law
2 2 2
b +c -a c 2 + a 2 - b2 a 2 + b 2 - c2
cos A  , cosB  , cos C 
2bc 2ca 2a b
2 E

, Wondershare
PDFelement
CHAPTER
Physics HandBook


Differentiat ion Maxima & Minima  of a function y=f(x)
dy dy 1
• yx 
n
 nx n 1 • y  nx   dy d2 y
dx dx x • For maximum value 0&   ve
dx dx 2
dy dy
• y  sin x   cos x • y  cos x    sin x dy d2 y
dx dx • For minimum value 0&   ve
dx dx 2
x  dy dy dv du
• ye   e x  • y  uv  u v
dx dx dx dx
Average o f a varying quantity
dy df  g  x   d  g  x  
• y  f  g  x    x2 x2
dx dg  x  dx
dy
 ydx
x1
 ydx
x1
• y=k(const ant)  0 If y = f(x) then  y   y  x2

dx x 2  x1
du dv
 dx
x1
v u
• y  u  dy  dx dx
v dx v2

Integration EN
C = Arbitrary constant, k = constant

•  f(x)dx  g(x) C

d
• (g(x))  f(x)
dx

•  kf(x)dx  k f(x)dx
LL

•  (u  v  w)dx   udx   vdx   wdx

•  e x dx  e x  C

x n 1
•  x n dx   C,n  1
A


n 1
1
•  dx  nx  C
x

•  sin xdx   cos x  C

•  cos xdx  sin x  C

1 x 
•  e x  dx  e C

n  x   n 1
•  x   dx   n  1 
C

Definite integration
b
b
 f(x)dx 
a
g(x)a  g(b)  g(a)

Area under the curve y = f(x) from x =a to a = b is
b
A   f(x)dx
a



E 3

, Wondershare
PDFelement

Physics HandBook CH APTER




FORMULAE FOR DETERMINATION OF AREA
FO RMULAE FOR
• Area of a square = (side) 2 DETERMINATION OF
• Area of rectangle = length ×breadth VOLUME
1
• Area of a triangle = ×base × height t
2
• Area of a trapezoid a
1
= × (distance between parallel sides) × (sum of parallel sides) b
2
• Area enclosed by a circle = r2 (r = radius) • Volume of a rectangular
• Surface area of a sphere = 4 r2 (r = radius) slab
• Area of a parallelogram = base × height = length × breadth × height
• Area of curved surface of cylinder = r = abt
where r = radius and  = length
• Volume of a cube = (side) 3

• Area of whole surface of cylinder = 2 r (r + ) where  = length
• Area of ellipse =  ab 4 3
• Volume of a sphere = r
(a & b are semi major and semi minor axis respectively) 3

• Surface area of a cube = 6(side) 2 EN (r = radius)
• Tot al surface area of a cone = r2 + r • Volume of a cylinder = r2 
(r = radius and  = length)
where r = r r 2  h 2 = lateral area
• Arc length s = r.  r
1
• Volume of a cone = r2 h
3
r2 
• Area of sector =  s (r = radius and h = height)
2
LL
s r
• Plane angle,   radian
r

A
• Solid angle,   steradian
r2
A



• To convert an angle from degree to radian, we have to multiply it by and to convert an angle
180 

180 
from radian to degree, we have to multiply it by .



dy dy
KEY POINTS




• By help of differentiation, if y is given, we can find and by help of integration, if is given,
dx dx
we can find y.

• The maximum and minimum values of function

A cos   B sin  are A2  B2 and  A2  B2 respectively.

• (a+b)2 = a 2 + b 2 + 2ab (a–b)2 = a 2 + b 2 – 2ab

(a+b) (a–b) = a 2 – b 2 (a+b)3 = a 3 + b 3 + 3ab (a+b)

(a–b)3 = a 3 – b 3 – 3ab (a–b)

4 E
$11.39
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
pritamghosh

Maak kennis met de verkoper

Seller avatar
pritamghosh
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-
The quality study notes deliverer

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen