100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Interview

Mathematics introduction to exponents

Beoordeling
-
Verkocht
-
Pagina's
7
Geüpload op
28-08-2023
Geschreven in
2023/2024

This document provides a comprehensive understanding of exponential notation and its significance in mathematics. Exponential notation, a fundamental concept in mathematical expressions, involves a base and an exponent. Through clear explanations and examples, this document explores the concept of exponents, squares, cubes, as well as square roots and cube roots. Section 2.1: What is an Exponent? In this section, we delve into the definition and importance of exponents. An exponent, symbolized as a letter or number above and to the right of an expression, empowers us to represent numbers in a compact and insightful way. The relationship between a base and an exponent is explained, where the base represents the number being raised, and the exponent denotes how many times the base is multiplied by itself. A visual example reinforces this concept using an image of a base and an exponent. The significance of exponential notation in solving mathematical expressions is emphasized, and a step-by-step breakdown of the process is provided using a numeric example. Section 2.2: Squares and Cubes Here, the focus shifts to the concepts of squares and cubes, both derived from exponents. The concept of squaring a base with an exponent of 2 is introduced, along with its practical interpretation as the area of a square with sides of length 'n'. Similarly, the concept of cubing a base with an exponent of 3 is explained, and its significance is related to the volume of a cube with sides of length 'n'. These concepts are illustrated through a graphic representation, enhancing the understanding of the relationship between exponents and geometric shapes. Section 2.3: Square Roots and Cube Roots The document proceeds to explore square roots and cube roots as inverse operations to squaring and cubing, respectively. The square root operation entails finding the value that, when multiplied by itself, yields the number under the root sign. Similarly, the cube root operation involves determining the number that, when multiplied by itself three times, equals the number beneath the cube root sign. The practical application of these operations is exemplified through calculations involving √100 and ³√125. A crucial note about the nature of results for negative numbers is included to provide a comprehensive understanding of roots. Conclusion: In summary, this document has provided a comprehensive overview of exponential notation, covering the concepts of exponents, squares, cubes, as well as square roots and cube roots. Through detailed explanations and illustrative examples, readers have gained insight into the fundamental principles that underlie many mathematical calculations. This understanding lays the foundation for further exploration of advanced mathematical concepts and applications.

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak
Schooljaar
200

Documentinformatie

Geüpload op
28 augustus 2023
Aantal pagina's
7
Geschreven in
2023/2024
Type
Interview
Bedrijf
Onbekend
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

Mathematics:
Exponents Part 1: Introduction


Exponential Notation - Notes
2.1 What is an Exponent?
 An exponent is a letter or number placed
above and to the right of an expression.
 Exponential form consists of a base and an
exponent.
 In a numerical expression, the base is the
number raised to a certain exponent.
 The exponent indicates how many times
to multiply the base by itself.
 For example, consider "2^3":
 Here, 2 is the base and 3 is the
exponent.
 It is read as "2 to the power of 3."
 To solve, multiply the base (2) by itself
three times: 2 * 2 * 2 = 8.
 Writing "2^3" in expanded form: 2 * 2 * 2
= 8.

,  This is known as exponential notation.




2.2 Squares and Cubes
 The square of a base with an exponent of
2 is called a square.
 Example: n^2 is "n squared."
 Resulting number (n^2) equals the area of
a square with sides of length n.
 The cube of a base with an exponent of 3
is called a cube.
 Example: n^3 is "n cubed."
 Resulting number (n^3) equals the
volume of a cube with sides of length n.
2.3 Square Roots and Cube Roots
 If exponent = 2, result = square number;
if exponent = 3, result = cube number.
$6.18
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
yasminels201

Maak kennis met de verkoper

Seller avatar
yasminels201
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
3
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen