100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Sujet grand oral mathématique : Le paradoxe des anniversaires

Beoordeling
4.0
(1)
Verkocht
6
Pagina's
3
Cijfer
Très Satisfaisant
Geüpload op
27-08-2023
Geschreven in
2023/2024

Sujet grand oral maths sur le paradoxe des anniversaires directement prêt à être utilisé. Explique de manière simple et détaillée ce paradoxe à l’aide d’exemples en faisant le lien avec le programme de mathématiques

Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Middelbare school
Studie
Lycée
Vak
School jaar
1

Documentinformatie

Geüpload op
27 augustus 2023
Aantal pagina's
3
Geschreven in
2023/2024
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Paradoxe des anniversaires


Intro : Durant ma scolarité je me suis retrouvé assez régulièrement dans des classes où 2
élèves fêtaient leur anniversaire le même jour. Pourtant avec 365 jours par an, une trentaine
d’élèves dans la classe, je me suis dit que la probabilité que cela arrive devait être faible.
Assez spontanément, quand j’ai posé cette question à mon entourage, les gens estiment,
quelle que soit la taille de l’échantillon, que cette probabilité est très inférieure à 50%. C’est
ce qu’on appelle le paradoxe des anniversaires. J’ai donc décidé de répondre à la question
en quoi les probabilités permettent-elles de contredire des idées reçues ? Pour répondre à
cette vaste question nous allons nous intéresser au paradoxe des anniversaires, en calculant
la probabilité qu’au moins deux élèves dans une classe fêtent leur anniversaire le même
jour.

Plan : On appelle A l’évènement qui nous intéresse à savoir A : « 2 élèves au moins fêtent
leur anniversaire le même jour. Calculer la probabilité de A est assez compliqué, il y a
beaucoup de possibilités, il peut y en avoir 2, 3, 4 etc.
Donc on va utiliser l’évènement contraire A « aucun élève ne fête son anniversaire le même
jour qu’un autre ». Pour trouver cette probabilité, je vous propose de s’intéresser tout
d’abord au cas où il y a 3 élèves. Et on veut qu’ils n’aient pas la même date d’anniversaire ;
et combien avons-nous alors de possibilités ? Pour le premier élève, on va supposer qu’on a
des années avec 365 jours, donc ici pour le premier élève il y a 365 possibilités, et
maintenant pour le 2ème élève, pour qu’il n’ait pas le même jour d’anniversaire que le
premier on a 364 possibilités et finalement pour le 3 ème élève, on doit enlever les 2 jours
d’anniversaire du 1er et du 2ème. On a donc 363 possibilités. Le nombre de possibilités pour 3
élèves est donc de365 ×364 × 363. Maintenant pour p élèves, ce nombre de possibilités est
de 365 ×364 × … ×(365− p+1). On retrouve bien nos p facteurs ici. Cela peut s’écrire sous la
365 ! p
forme : = A 365. D’ailleurs on peut directement voire la situation comme un
(365−p) !
arrangement puisque l’ordre compte et il n’y a pas de répétition. (L’arrangement d’un
ensemble d’éléments est une disposition ordonnée d’un certain nombre d’éléments de cet
ensemble.


Il faut bien entendu préciser que l’on considère que nous sommes dans une situation
d’équiprobabilité. (Toutes les issues d’une expérience aléatoire ont la même probabilité).
Pour un élève donné, la probabilité qu’il naisse tel jour ou tel autre jour est la même.
'
Nombre d issues de A b Nombre de cas favorables
P ( A )= =
Nombre d ' issuesde Ω Nombre de cas possibles

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
1 jaar geleden

4.0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
jbnshadowlax ENAC
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
21
Lid sinds
2 jaar
Aantal volgers
17
Documenten
10
Laatst verkocht
6 maanden geleden

4.3

4 beoordelingen

5
2
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen