100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Number system grade 9 RD SHARMA

Beoordeling
-
Verkocht
-
Pagina's
26
Cijfer
A+
Geüpload op
18-08-2023
Geschreven in
2021/2022

RD sharma has the best questions to practice on, get it now to be the best on number system

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Middelbare school
School jaar
3

Documentinformatie

Geüpload op
18 augustus 2023
Aantal pagina's
26
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Class IX Chapter 1 – Number System Maths
______________________________________________________________________________

Exercise -1.1
𝑝
1. Is zero a rational number? Can you write it in the form 𝑞, where p and q are integers and
𝑞 ≠ 0?
Sol:
p
Yes, zero is a rotational number. It can be written in the form of where q to as such as
q
0 0 0
, , , etc.........
3 5 11

2. Find five rational numbers between 1 and 2.
Sol:
Given to find five rotational numbers between 1 and 2
A rotational number lying between 1 and 2 is
3 3
1  2   2  3  2  i.e.,1   2
2 2
3
Now, a rotational number lying between 1 and is
2
 3  23 5 5 1 5
1    2   2  2   
 2  2  2 2 2 4
5 3
i.e., 1  
4 2
5
Similarly, a rotational number lying between 1 and is
4
 5  45 9 9 1 9
1    2   2  2   
 4  2  4 4 2 8
9 5
i.e., 1  
8 4
3
Now, a rotational number lying between and 2 is
2
 5  45 9 9 1 9
1    2   2  2   
 4  4  4 4 2 8
9 5
i.e., 1  
8 4
3
Now, a rotational number lying between and 2 is
2
3   3 4  7 1 7
  2  2   2   
2   2  2 2 4

,Class IX Chapter 1 – Number System Maths
______________________________________________________________________________
3 7
i.e.,  2
2 4
7
Similarly, a rotational number lying between and 2 is
4
7   78 15 1 15
  2  2   2   
4   4  4 2 8
7 15
i.e.,   2
4 8
9 5 3 7 15
1      2
8 4 2 4 8
Recall that to find a rational number between r and s, you can add r and s and divide the
rs 3
sum by 2, that is lies between r and s So, is a number between 1 and 2. you can
2 2
proceed in this manner to find four more rational numbers between 1 and 2, These four
5 11 13 7
numbers are, , , and
4 8 8 4

3. Find six rational numbers between 3 and 4.
Sol:
Given to find six rotational number between 3 and 4
We have,
7 21 7 28
3  and 4  
7 7 7 7
We know that
21  22  23  24  25  26  27  28
21 22 23 24 25 26 27 28
       
7 7 7 7 7 7 7 7
22 23 24 25 26 27
3      4
7 7 7 7 7 7
Hence, 6 rotational number between 3 and 4 are
22 23 24 25 26 27
, , , , ,
7 7 7 7 7 7

3 4
4. Find five rational numbers between 4 𝑎𝑛𝑑 5
Sol:
3 4
Given to find 5 rotational numbers lying between and .
5 5
We have,

, Class IX Chapter 1 – Number System Maths
______________________________________________________________________________
3 6 18 4 6 24
  and  
5 6 100 5 6 30
We know that
18  19  20  21  22  23  24
18 19 20 21 22 23 24
      
30 30 30 30 30 30 30
3 19 20 21 22 23 4
     , ,
5 30 30 30 30 30 5
3 19 2 7 11 23 4
      
5 30 3 10 15 30 5
3 4
Hence, 5 rotational number between and are
5 5
19 2 7 11 23
, , , , .
30 3 10 15 30

5. Are the following statements true or false? Give reasons for your answer.
(i) Every whole number is a rational number.
(ii) Every integer is a rational number.
(iii) Every rational number is a integer.
(iv) Every natural number is a whole number.
(v) Every integer is a whole number.
(vi) Evert rational number is a whole number.
Sol:
(i) False. As whole numbers include zero, whereas natural number does not include zero
(ii) True. As integers are a part of rotational numbers.
(iii) False. As integers are a part of rotational numbers.
(iv) True. As whole numbers include all the natural numbers.
(v) False. As whole numbers are a part of integers
(vi) False. As rotational numbers includes all the whole numbers.
$7.99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
adisankar

Maak kennis met de verkoper

Seller avatar
adisankar
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen