1.12 Improper Integrals
Definition:
an integral having either,an infinite limitofintegration or an unbounded integrand
eg. S8, ** and So
Improper integrals with infinite domain of integration:
a) ifthe integral Jaf(x)dx exists for all Ra
Sif(x) dx
GS,f(x)dx
=
when the limitexists and is finite
b) ifthe integral SPf(x)dxexists for all rcb
Sf(x)dX eim
= SPf(x)dx
n -0
-
When the limitexists and is finite
c) ifthe integral S."f(x)dx exists for all rai
f(x)
Sf(x)dX
e Sif(x)dx+ im S, dx
=
when both limits existand are finite Canyc can be uses)
example Sa
firstintegrate to a finite domain
Sa, =arctances ("a
=arctan(R) -
arctan(a)
take the limitas R =
0
S,* R)*, **
=
-Rim/arctan (R) -arctan()
=I-arctan(a)
Improper integrals with undounded integrand:
a) if (f(x) dx exists for all a <t<b,
Sf(x)dx eim
=
Sf(x)dX
t -> at
when the limitexists and is finite
b) if Saf(x) dxexists for all a CTcb
Definition:
an integral having either,an infinite limitofintegration or an unbounded integrand
eg. S8, ** and So
Improper integrals with infinite domain of integration:
a) ifthe integral Jaf(x)dx exists for all Ra
Sif(x) dx
GS,f(x)dx
=
when the limitexists and is finite
b) ifthe integral SPf(x)dxexists for all rcb
Sf(x)dX eim
= SPf(x)dx
n -0
-
When the limitexists and is finite
c) ifthe integral S."f(x)dx exists for all rai
f(x)
Sf(x)dX
e Sif(x)dx+ im S, dx
=
when both limits existand are finite Canyc can be uses)
example Sa
firstintegrate to a finite domain
Sa, =arctances ("a
=arctan(R) -
arctan(a)
take the limitas R =
0
S,* R)*, **
=
-Rim/arctan (R) -arctan()
=I-arctan(a)
Improper integrals with undounded integrand:
a) if (f(x) dx exists for all a <t<b,
Sf(x)dx eim
=
Sf(x)dX
t -> at
when the limitexists and is finite
b) if Saf(x) dxexists for all a CTcb