nts (And tleasuremeh
Mairoum Yalue whon bhsico quanb o
(a) Plane Scume o men sioh 1hen dimehs1on
cungle 2
Cr alysic s
not poscible
(b)4olid anglt - 47 le) e Cquate he pOer e L
+Physi Ca unolameh tal () on dT. So, t on OrK h e
quantit oluived quanti debends on) bn hece
Sub plero en tary ( phytica quant
Plane ahgle - raud A physicall cOrrcct cq uaiOn
fa) alwalyS d i roensiohall Dred
Solid angle- Sr
bu o d i r enstOnce ll4
+univercally eg uaton nced not be physicall
inVari a ble , oett de kned,
Suutable ah c eaci Cor ec
civaables
signihccent gure
)A11 non K ero are s g n f i canht
+For C
e a Stremeht bLe non xero
dig or
hu co n s a h t .
nun b buni 13n icant
ATTzerD& on let ide are non-
+ VELTL EMUT2
gnica nt ou 2E
P=MT3 el) act hum ber ha ve tnknite
MLT2 Poo
Sgh Ccun tVure
. e PoO erfOr ro are no Coneidered
8ni
Trolin Cant rgure
+Collicient scocih M1 18)Xeo ctte cletirna arc
Signiicant 3.SO 3sf
* phYsi cafqu anti hy having nit O.00S1 E not 3
heed not b clnehston but t dh addi ion
do Phycrcal Leahtiy h avi nj
Subre cio .fi na
TES f s w itten in mi nirgA rO
heve unit
lmehsiOn ust decimal place
+ uan titiec same dimehC1On+ 5n mu1h plica
tub racfed ad el c
tion divit on, fina
Can only be ,
resul i ritten io minirnum
equated =Princi ple o
Homoaenihf SgnCant ures
limita tion lea st count- Mini ro u rca ctrng
inmensi onal
Analysis hat can be ake br nsteumeht
(a) hot uced o derive dimcnsionlecS or
qanm um OScible error hat can
prObortona conctCnt
(b) can't derive dimensfonle sC be
erlormed by insruumeht
Lnction lik shb, Cet e, t h C c Metre sca le
lCaun't deive torrmula ohith
Rea eling = Mtn Acalt Readthg
hove Cun ter m
d at physfce Leas count
quahfi y debendA
Mairoum Yalue whon bhsico quanb o
(a) Plane Scume o men sioh 1hen dimehs1on
cungle 2
Cr alysic s
not poscible
(b)4olid anglt - 47 le) e Cquate he pOer e L
+Physi Ca unolameh tal () on dT. So, t on OrK h e
quantit oluived quanti debends on) bn hece
Sub plero en tary ( phytica quant
Plane ahgle - raud A physicall cOrrcct cq uaiOn
fa) alwalyS d i roensiohall Dred
Solid angle- Sr
bu o d i r enstOnce ll4
+univercally eg uaton nced not be physicall
inVari a ble , oett de kned,
Suutable ah c eaci Cor ec
civaables
signihccent gure
)A11 non K ero are s g n f i canht
+For C
e a Stremeht bLe non xero
dig or
hu co n s a h t .
nun b buni 13n icant
ATTzerD& on let ide are non-
+ VELTL EMUT2
gnica nt ou 2E
P=MT3 el) act hum ber ha ve tnknite
MLT2 Poo
Sgh Ccun tVure
. e PoO erfOr ro are no Coneidered
8ni
Trolin Cant rgure
+Collicient scocih M1 18)Xeo ctte cletirna arc
Signiicant 3.SO 3sf
* phYsi cafqu anti hy having nit O.00S1 E not 3
heed not b clnehston but t dh addi ion
do Phycrcal Leahtiy h avi nj
Subre cio .fi na
TES f s w itten in mi nirgA rO
heve unit
lmehsiOn ust decimal place
+ uan titiec same dimehC1On+ 5n mu1h plica
tub racfed ad el c
tion divit on, fina
Can only be ,
resul i ritten io minirnum
equated =Princi ple o
Homoaenihf SgnCant ures
limita tion lea st count- Mini ro u rca ctrng
inmensi onal
Analysis hat can be ake br nsteumeht
(a) hot uced o derive dimcnsionlecS or
qanm um OScible error hat can
prObortona conctCnt
(b) can't derive dimensfonle sC be
erlormed by insruumeht
Lnction lik shb, Cet e, t h C c Metre sca le
lCaun't deive torrmula ohith
Rea eling = Mtn Acalt Readthg
hove Cun ter m
d at physfce Leas count
quahfi y debendA