100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Physics Laboratory (Samenvatting Natuurkundig laboratorium)

Beoordeling
-
Verkocht
1
Pagina's
11
Geüpload op
25-03-2017
Geschreven in
2016/2017

Physics Laboratory 1 - Data and error analyses Samenvatting van de studie astronomie , vak: Physics laboratory.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
25 maart 2017
Aantal pagina's
11
Geschreven in
2016/2017
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summary Physics Laboratory

written by

TimonBeeftink




www.stuvia.com




Downloaded by: svenlay |
Distribution of this document is illegal

, Stuvia.com - The Marketplace to Buy and Sell your Study Material




Chapter 1: Introduction
1.1 Why error analysis?
It is impossible to indicate the exact value of a physical quantity when it is determined experimentally; due to
equipment, persons doing the experiment etc. There will always be an error in the final quantity. Error analysis
describes how errors in separate measurements propagate and influence the final result.


1.2 Sources of error
Possible errors during an experiment are:
 reading error: when reading a value from a scale, a reading error always occurs.
 adjustment error: when adjusting a certain quantity in an experiment, an error is made.
 methodical error: this arises if a measurement instrument influences the measured quantity.
 instrumentation error: due to the calibration accuracy of an apparatus an error occurs.
 errors in the experimental setup: occur if the theory is imperfect or things are neglected.

1.3 Error classification
Errors can be divided into two different classes:
 random errors: if its sign and magnitude vary unpredictably when a measurement is repeated.
 systematic errors: if its sign and magnitude remain the same the whole experiment.

1.4 Representation of the random error
There are two ways in which a random error can be represented:
 assigned error: if one single measurement (or a few) of a quantity is performed, an estimate has to
made of the uncertainty in the result. The error ∆𝑥 is then assigned in such a way, that the interval 𝑥 −
∆𝑥 to 𝑥 + ∆𝑥 is approximately 68% of the distribution of values that could be attributed to the value.
 statistical error: a statistical error is derived from the spread in the results of a large number of repeated
measurements of a single quantity. The statistical error 𝑠𝑥 is then defined such that it covers
approximately 68% of 𝑥 − 𝑠𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑠𝑥 .
The value of a quantity 𝑋 is commonly written as 𝑋 = 𝑥 ± ∆𝑥, where 𝑥 is the best estimate for 𝑋, based on
measurement results, and ∆𝑥 the error as defined above. All errors can be given as either an absolute error or a
relative error. The absolute error has the same dimension as the quantity it belongs to, the relative error is a
fraction and is dimensionless. This yields the following table:

assigned error statistical error
absolute error ∆𝑥 𝑠𝑥
relative error (fraction) ∆𝑥 𝑠𝑥
|𝑥| |𝑥|
relative error (percentage) ∆𝑥 𝑠𝑥
100 100
|𝑥| |𝑥|


1.5 Rounding off and notation of measurement results
Since the accuracy of an experiment is limited, not all digits of the calculated result are meaningful. Meaningful
digits are called significant digits. The general rule is that an error is always rounded off to 1 significant digit and
that it is always rounded off upwards. A measurement result is rounded off in such a way that its last digit is at
the same decimal place as the least significant digit of the error. Some examples:
 𝑣 = 2,71828 𝑚𝑠 −1 ± 2 𝑚𝑚𝑠 −1 → 𝑣 = 2,718 ± 0,002 𝑚𝑠 −1
 𝐶 = 4722 𝜇𝐹 ± 0,42 𝑚𝐹 → 𝐶 = 4,7 ± 0,5 𝑚𝐹 = (4,7 ± 0,5) ∙ 103 𝜇𝐹
 𝑅 = 68 ± 22 𝑘𝛺 → 𝑅 = 68,00 ± 0,03 𝑀𝛺
o Remark: the relatively small error ∆𝑅 warrants more significant digits in 𝑅 then given.

1.6 Accuracy versus precision
In measurement theory, there is a distinction between accuracy and precision. An accurate measurement is one
which has a small error, which means that the final result is very close to the true value of the quantity. A precise
measurement is one with many significant digits. But a precise measurement can be inaccurate.

1

Downloaded by: svenlay |
Distribution of this document is illegal

, Stuvia.com - The Marketplace to Buy and Sell your Study Material




Chapter 2: Propagation of errors
2.1 Quantities dependent on a single variable
Errors in the measurement lead to an error in the final quantity: so-called propagation of errors. When you are
dealing with one variable, you can apply the following general formula for a function 𝑦 = 𝑦(𝑥):

𝑑𝑦
∆𝑦 = ∆𝑥
𝑑𝑥


2.2 Quantities dependent on more than one variable
For quantities dependent on more than one (independent) variable, there are error propagation formulae:

Relation between 𝑍 and 𝐴, 𝐵 Relation between standard errors
𝑍 =𝐴+𝑐 ∆𝑍 = ∆𝐴
𝑍 = 𝑐𝐴 ∆𝑍 = 𝑐∆𝐴
𝑍 =𝐴±𝐵 (∆𝑍)2 = (∆𝐴)2 + (∆𝐵)2
𝑍 = 𝐴𝐵 or 𝑍 =
𝐴
∆𝑍 2 ∆𝐴 2 ∆𝐵 2
𝐵 ( ) =( ) +( )
𝑍 𝐴 𝐵
𝑍 = 𝐴𝑛 ∆𝑍 ∆𝐴
=𝑛
𝑍 𝐴
𝑍 = ln 𝐴 ∆𝐴
∆𝑍 =
𝐴
𝑍 = 𝑒𝐴 ∆𝑍
= ∆𝐴
𝑍

Calculating errors can most easily be done by using partial derivatives (derivative with respect to one specific
variable, while keeping the others constant). ∆𝑄𝑥 , ∆𝑄𝑦 , ∆𝑄𝑧 , … can be calculated for any general function given
by: 𝑄 = 𝑓(𝑥, 𝑦, 𝑧, … ). This yields:

𝜕𝑓
∆𝑄 = ∆𝑥
𝜕𝑥


This results in:

𝜕𝑓 2 𝜕𝑓 2 𝜕𝑓 2
∆𝑄 = √( ∆𝑥) + ( ∆𝑦) + ( ∆𝑧)
𝜕𝑥 𝜕𝑦 𝜕𝑧


Example

Exercise
A resistor with resistance 𝑅 carries a current 𝐼. The power 𝑃 dissipated as heat by the resistor is given by
𝑃 = 𝐼 2 𝑅. A resistor with 𝑅 = 330 Ω is used, the accuracy of 𝑅 is listed by the factory as 5%. The current is
measured: 𝐼 = 0,28 ± 0,01 𝐴.
Calculate the error in the power 𝑃 and write the final result in the correct notation.

Solution
Using the method of partial derivatives yields:

𝑃 = 𝐼 2 𝑅 = 25,872 𝑊
𝜕𝑃 2 𝜕𝑃 2
∆𝑃 = √( ∆𝐼) + ( ∆𝑅) = √(2𝐼𝑅∆𝐼)2 + (𝐼 2 ∆𝑅)2 = 2,2558 𝑊
𝜕𝐼 𝜕𝑅


So: 𝑃 = 𝑃 ± ∆𝑃 = 26 ± 3 𝑊

2.3 Dependent errors
When errors depend on each other, you cannot sum up the errors quadratically. The exact procedure to calculate
the final error depends on how the measured results interact with each other.

2

Downloaded by: svenlay |
Distribution of this document is illegal
$3.59
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
svenlay
4.0
(1)

Maak kennis met de verkoper

Seller avatar
svenlay Rijksuniversiteit Groningen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
9
Lid sinds
8 jaar
Aantal volgers
9
Documenten
22
Laatst verkocht
2 jaar geleden

4.0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen