100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Lineaire Algebra 2- Samenvatting- WB Y1 Q4- TU Delft

Rating
-
Sold
-
Pages
13
Uploaded on
06-07-2023
Written in
2022/2023

Hierin een samenvatting van het Wiskunde vak in het vierde kwartaal, linaire algebra 2, van de studie Werktuigbouwkunde op de TU Delft Bevat uitleg over: Determinanten, eigenwaarden, eigenvectoren, complexe eigenwaarden, differential equations, quadratic forms, discrete dynamical systems, gramm-schmidt, constrained optimization, singular value decomposition.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Yes
Uploaded on
July 6, 2023
Number of pages
13
Written in
2022/2023
Type
Summary

Subjects

Content preview

17 en 18 Determinanten en applicatie
Determinant 2x2: 𝑎𝑑 − 𝑏𝑐
Determinant 3 x 3 en hoger (enkel vierkante matrixen) → Cofactor expansion
Dit kan je langs enkele rij of kolom doen (kies kol/rij met meeste 0)
𝑛 𝑟𝑖𝑗 + 𝑛 𝑐𝑜𝑙
(− 1) * 𝑎𝑛𝑚 * 𝐷𝑒𝑡(𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑎𝑡 𝑜𝑣𝑒𝑟𝑏𝑙𝑖𝑗𝑓𝑡 𝑛𝑎 𝑛 𝑒𝑛 𝑚 𝑤𝑒𝑔 𝑡𝑒 𝑠𝑡𝑟𝑒𝑝𝑒𝑛) + ...... 𝑒𝑡𝑐 𝑙𝑎𝑛𝑔𝑠 𝑑𝑒 𝑟𝑖𝑗/𝑐𝑜𝑙
Speciale matrix: triangular matrices (driehoekje nullen links onder of rechtsboven):
Det=product van de diagonale waarden.

Wat is een determinant buiten het feit dat je hier inverses mee kan uitrekenen?
Bepaalde transformaties zorgen ervoor dat een oppervlak uitgerekt wordt (shear
transformations), de determinant van deze transformatie matrix vertelt jou eigenlijk met
welke scalar het originele oppervlak (waar je de matrix op loslaat, dus eig verzameling
vectoren) vergroot/verkleint wordt! Als je dit doet voor R3 en hoger, heb je het dus over
volumevergroting, geen oppervlaktes. hoe een rechthoek een parallellogram wordt noem je
dit in 3D een parallelepiped genoemd.Hier kan je ook eigenwaarden mee berekenen, zie hs
19.


19 Eigenwaarden en Eigenvectoren
Check of dit een eigenvector is: Av=λv, dus matrix A loslaten op een vector zorgt voor een
veelvoud van diezelfde vector, hij is met de eigenwaarde langer/korter geworden.
λ → Det(A-λI)=0 (dit is de characteristic equation)
Dit betekent eigenlijk dat we een matrix A-lambda gaan vinden waarvoor hij niet
inverteerbaar is.

Als je deze vergelijking opgelost kan je meerdere keren dezelfde λ vinden, dit geeft aan wat
de algebraic multiplicity is.
Geometric multiplicity: geeft aan hoeveel eigenvectoren corresponderen met dezelfde
eigenwaarde λ. Je kijkt dus naar dim( Null(A-λI))
De geometrische multipliciteit kan nooit hoger zijn dan de algebraic multiplicity.
De som van de algebraïsche multipliciteiten van de eigenwaarden geeft n terug (A=nxn)
Als voor elke eigenwaarde de Geo mult=alg mult, dan is A diagonaliseerbaar (HS 20)

Set eigenvectoren zijn altijd linearly independent

Bij de triangular matrices staat de eigenwaarde op de diagonaal !!!

A is alleen inverteerbaar als:
- 0 is geen eigenwaarde
- De determinant is niet nul

Rekenregels rond determinanten
- Det(AB)=Det(A)*Det(B)
- Det(A^T)=Det(A)

, - Rij optellen bij een andere rij verandert Det(A) niet
- 2 rijen verwisselen maakt Det(A) = -Det(A)
- Een rij vermenigvuldigen met een scalar r geeft, Det(A)=r* Det(A) [Det(rA) is fout!]




20 Diagonalization
Similarity
−1
Als A en B nxn matrixen zijn, dan zijn deze similar als A te schrijven is als 𝐴 = 𝑃𝐵𝑃
Als twee matrices similar zijn, dan hebben ze dezelfde characteristic polynomial, en dus ook
dezelfde eigenwaarden (inclusief hun geo-multipliciteit).




Een matrix is alleen diagonaliseerbaar als deze n linearly independent eigenvectoren heeft.
Dan kan je een eigenvector basis vormen.
−1
Een matrix A is diagonaliseerbaar als A (nxn) te schrijven is als 𝐴 = 𝑃𝐷𝑃
$5.93
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
carmenzaky1

Get to know the seller

Seller avatar
carmenzaky1
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
2
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions