100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Summary AQA Alevel Chemistry Reactions of Aromatics Notes

Rating
-
Sold
-
Pages
6
Uploaded on
25-06-2023
Written in
2022/2023

AQA Alevel Chemistry Reactions of Aromatics Notes Electrophilic Substitution

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Study Level
Examinator
Subject
Unit

Document information

Uploaded on
June 25, 2023
Number of pages
6
Written in
2022/2023
Type
Summary

Subjects

Content preview

Reactions of Aromatics
Electrophilic Substitution
The benzene ring is an area of high electron density so it attracts electrophiles.
Electrophiles are electron pair acceptors attracted to areas of high electron density.
The benzene ring is so stable that it does not undergo electrophilic addition which would
destroy the delocalised rings of electrons. Instead it undergoes electrophilic substitution where
one of the H atoms becomes substituted for the electrophile.




1. The electron dense region at the centre of the benzene ring attracts the electrophile.
2. The electrophile steals a pair of electrons from the centre of the benzene ring and forms a
bond with one of the carbons.
3. This partially breaks the delocalised electron ring giving the molecule a positive charge.
4. To regain stability the benzene ring loses a H from the carbon that the electrophile is
bound to.
5. Electrophilic substitution occurs as the H is replaced with an electrophile.
The Stages of Electrophilic Substitutions:
Generation of the electrophile.
The electrophile attack.
Regenerating aromaticity.
Nitration
When benzene is warmed with a concentrated nitric acid and concentrated sulphuric acid
(catalyst) nitrobenzene is produced.
Sulphuric acid acts as a catalyst which makes the nitronium ion which is the electrophile.
Once the nitronium ion forms it reacts with the benzene molecule to form nitrobenzene.

, Nitronium ion attracts the benzene ring.
An unstable intermediate forms.
H+ is lost.
The H+ ion reacts with H2SO4 to reform the catalyst.
If you only want one NO2 group added (mononitration) the temperature needs to be below
55degrees. Above this temperature lots of substitutions happen.
Sulphuric Acid is the catalyst.
The Nitric Acid is the base.
NO2 is the electrophile.




Uses of Nitration Reactions
Nitro-compounds can be reduced to form aromatic amines. They can manufacture dyes and
pharmaceuticals. Nitro-compounds decompose violently when heated so they are also used as
explosives such as TNT.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
ramiriam The University of Edinburgh
Follow You need to be logged in order to follow users or courses
Sold
98
Member since
2 year
Number of followers
36
Documents
244
Last sold
1 month ago

4.5

24 reviews

5
15
4
8
3
0
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions