100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Complete Solution Manual Linear Algebra A Modern Introduction 4th Edition David Poole

Rating
3.3
(4)
Sold
12
Pages
937
Grade
A+
Uploaded on
21-06-2023
Written in
2022/2023

Linear Algebra A Modern Introduction 4th Edition David Poole Solutions Manual Complete Solution Manual Linear Algebra A Modern Introduction 4th Edition David Poole PDF File All Pages All Chapters Grade A+

Institution
Linear Algebra
Module
Linear Algebra











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Linear Algebra
Module
Linear Algebra

Document information

Uploaded on
June 21, 2023
Number of pages
937
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

  • linea

Content preview

Linear Algebra A Modern Introduction 4th Edition David Poole Solutions Manual Contents 1 Vectors 3 1.1 The Geometry and Algebra of Vectors ................................ ................................ ................................ ...... 3 1.2 Length and Angle: The Dot Product ................................ ................................ ................................ . 10 Exploration: Vectors and Geometry ................................ ................................ ................................ .................. 25 1.3 Lines and Planes ................................ ................................ ................................ ................................ ......... 27 Exploration: The Cross Product ................................ ................................ ................................ ................. 41 1.4 Applications ................................ ................................ ................................ ................................ ................. 44 Chapter Review ................................ ................................ ................................ ................................ .................... 48 2 Systems of Linear Equations 53 2.1 Introduction to Systems of Linear Equations ................................ ................................ .......................... 53 2.2 Direct Methods for Solving Linear Systems ................................ ................................ ............................. 58 Exploration: Lies My Computer Told Me ................................ ................................ ................................ .. 75 Exploration: Partial Pivoting ................................ ................................ ................................ ....................... 75 Exploration: An Introduction to the Analysis of Algorithms ................................ ................................ .......... 77 2.3 Spanning Sets and Linear Independence ................................ ................................ ................................ .79 2.4 Applications ................................ ................................ ................................ ................................ ................. 93 2.5 Iterative Methods for Solving Linear Systems ................................ ................................ ...................... 112 Chapter Review ................................ ................................ ................................ ................................ ................. 123 3 Matrices 129 3.1 Matrix Operations ................................ ................................ ................................ ................................ .... 129 3.2 Matrix Algebra ................................ ................................ ................................ ................................ .. 138 3.3 The Inverse of a Matrix ................................ ................................ ................................ .......................... 150 3.4 The LU Factorization ................................ ................................ ................................ ......................... 164 3.5 Subspaces, Basis, Dimension, and Rank ................................ ................................ ................................ 176 3.6 Introduction to Linear Transformations ................................ ................................ ................................ 192 3.7 Applications ................................ ................................ ................................ ................................ .............. 209 Chapter Review ................................ ................................ ................................ ................................ ................. 230 4 Eigenvalues and Eigenvectors 235 4.1 Introduction to Eigenvalues and Eigenvectors ................................ ................................ ..................... 235 4.2 Determinants ................................ ................................ ................................ ................................ ............ 250 Exploration: Geometric Applications of Determinants ................................ ................................ ................ 263 4.3 Eigenvalues and Eigenvectors of n × n Matrices ................................ ................................ ................. 270 4.4 Similarity and Diagonalization ................................ ................................ ................................ ......... 291 4.5 Iterative Methods for Computing Eigenvalues ................................ ................................ ..................... 308 4.6 Applications and the Perron -Frobenius Theorem ................................ ................................ ................ 326 Chapter Review ................................ ................................ ................................ ................................ ................. 365 1 2 CONTENTS 5 Orthogonality 371 5.1 Orthogonality in Rn................................ ................................ ................................ ................................ ................................ .......... 371 5.2 Orthogonal Complements and Orthogonal Projections ................................ ................................ ....... 379 5.3 The Gram -Schmidt Process and the QR Factorization ................................ ................................ .. 388 Exploration: The Modified QR Process ................................ ................................ ................................ ... 398 Exploration: Approximating Eigenvalues with the QR Algorithm ................................ ......................... 402 5.4 Orthogonal Diagonalization of Symmetric Matrices ................................ ................................ ............ 405 5.5 Applications ................................ ................................ ................................ ................................ ............... 417 Chapter Review ................................ ................................ ................................ ................................ .................. 442 6 Vector Spaces 451 6.1 Vector Spaces and Subspaces ................................ ................................ ................................ ................. 451 6.2 Linear Independence, Basis, and Dimension ................................ ................................ ......................... 463 Exploration: Magic Squares ................................ ................................ ................................ ............................. 477 6.3 Change of Basis ................................ ................................ ................................ ................................ ........ 480 6.4 Linear Transformations ................................ ................................ ................................ ............................ 491 6.5 The Kernel and Range of a Linear Transformation ................................ ................................ ............. 498 6.6 The Matrix of a Linear Transformation ................................ ................................ ................................ 507 Exploration: Tiles, Lattices, and the Crystallographic Restriction ................................ ........................ 525 6.7 Applications ................................ ................................ ................................ ................................ ............... 527 Chapter Review ................................ ................................ ................................ ................................ .................. 531 7 Distance and Approximation 537 7.1 Inner Product Spaces ................................ ................................ ................................ ............................... 537 Exploration: Vectors and Matrices with Complex Entries ................................ ................................ ...... 546 Exploration: Geometric Inequalities and Optimization Problems ................................ .............................. 553 7.2 Norms and Distance Functions ................................ ................................ ................................ ............... 556 7.3 Least Squares Approximation ................................ ................................ ................................ ................. 568 7.4 The Singular Value Decomposition ................................ ................................ ................................ ........ 590 7.5 Applications ................................ ................................ ................................ ................................ ............... 614 Chapter Review ................................ ................................ ................................ ................................ .................. 625 8 Codes 633 8.1 Code Vectors ................................ ................................ ................................ ................................ ............. 633 8.2 Error -Correcting Codes ................................ ................................ ................................ ........................... 637 8.3 Dual Codes ................................ ................................ ................................ ................................ ................ 641 8.4 Linear Codes ................................ ................................ ................................ ................................ ............. 647 8.5 The Minimum Distance of a Code ................................ ................................ ................................ ......... 650 −3 0 −3 −3 3 0 −3 3 0 −3 −2 −5 Chapter 1 Vectors 1.1 The Geometry and Algebra of Vectors 1. 2. Since 2 + 3 = 5 , 2 + 2 = 4 , 2 + −2 = 0 , 2 + 3 = 5 , plotting those vectors gives – – – – – 3 (–2, 3) 3 (2, 3) 2 1 –2 –1 1 2 (3, 0) 3 –1 (3, –2) –2 1 2 3 4 5 1 c b 2 a 3 d 4 5 4 CHAPTER 1. VECTORS #−−−−» — − − 2 2 2 2 6 3 2 3 6 6 #−−−−» 3 2 a 1 c b d –1 1 2 3 3. c 4. Since the heads are all at (3, 2, 1), the tails are at 3 0 3 3 3 0 3 1 2 3 −1 4 2 − 2 = 0 , 2 − 2 = 0 , 2 − −2 = 4 , 2 − −1 = 3 . 1 0 1 #−−−−» 1 1 0 1 1 0 1 −2 3 5. The four vectors AB are – – In standard position, the vectors are #−−−−» (a) AB = [4 1, 2 ( 1)] = [3, 3]. #−−−−» (b) AB = [2 − 0, −1 − (−2)] = [2, 1] (c) AB = 1 − 2, 3 − 3 = − 3 , 3 (d) AB = 1 − 1 , 1 − 1 = − 1 , 1 . 2 z 1 b –2 –1 0 1 y 2 0 –1 0 1 a 2 3 x –1 d –2 3 c 2 1 d a 1 2 3 4 1 b 2
$16.99
Get access to the full document:
Purchased by 12 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 4 reviews
1 year ago

9 months ago

1 year ago

1 year ago

We sincerely appreciate your outstanding 5-star review of this document. Your feedback means a great deal to us!

1 year ago

useless

3.3

4 reviews

5
2
4
0
3
0
2
1
1
1
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
gradexam Chamberlain College Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
4914
Member since
3 year
Number of followers
3389
Documents
4041
Last sold
1 day ago
Learning is hard, but with us it will be easier. You have made the right choice!

Grade Exam specializes in providing study guides that include exams, tests, past work, and quiz questions. We work on every aspect and take into account your wishes every day!

4.1

668 reviews

5
385
4
123
3
77
2
17
1
66

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions