100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Résumé Structure Algébrique 2

Rating
-
Sold
-
Pages
8
Uploaded on
14-06-2023
Written in
2021/2022

Cette fiche est une suite qui résume le concept de la structure algébrique. En parcourant ses pages, vous découvrirez un recap sur les espaces vectoriels, sur les applications linéaires ainsi que de la réduction.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 14, 2023
Number of pages
8
Written in
2021/2022
Type
Summary

Subjects

Content preview

^
Rappels sur les espace vectoriels


Définition

Un espace vectoriel sur un corps 1K est un triplet ( V
,
+, .
) OÙ


V est un ensemble

+ est une opération interne Vxv →
v est appelé addition





est opération externe IKXV →
v appelé multiplication par scalaire
• .


une un



tq I .
Ku ,
v ,
w E V
,
u + Cv + w ) =
( u + v ) + w



2. 70 C- V
,
tu C- V
,
V + 0
=
0 tu
=



KV E Z V
tq
=
3. V W E ✓ + w W tu =
0
,


4 Fr
t
E V
=
W W tu v + w
,
.


,



5. tt
, µ C- 1K tu c- V
,
X . (µ V ) =
( ✗µ) . ✓
,
.




6 FV E V 1 V -
=
V
,
.

.




7. V1 E IK HVEV, (✗ +
µ) V ✗ v + µ ✓
µ
=
-




,
- .




,



8. KX C- 1K
,
Kv ,
w E V
,
X .

(✓ + w ) =
✗ ✓ .
+ ✗ .
W


-




l Les
génériques
:

.




"

Les IR -




espaces vectoriels
:
Rn ,
R [ ×] ,
IRN ,
c ( [ 0,1 ] , IR ) . .




"

Les 1k -



espaces vectoriels :
1km
,
1K [ ×] ,
IKN ,
E

2. Des choses que vous avez déjà croisées

Le ¢ espace vectoriel des fonctions périodiques IR à valeurs dans ¢

-

sur .





Le R -




espace vectoriel ¢ ,
les Q -


espaces vectoriels ☒ [i] , ☒ [ F2 ]



Définition
_




Une base d' une 1K -



espace vectoriel V est une famille ( ei ) de vecteurs de

V
tq
:
ttx c- V il existe une unique famille de scalaires ( ti ) d' éléments de

1K dt seul un nb fini d' ④ émts est non nul et


Exjej
=




Théorème
-




Tout IK espace vectoriel admet des bases
-




Définition

On appelle dimension d' un 1K -


espace vectoriel le cardinal commun de ses bases
]
Exemple : "
1km est un 1K -




espace vectoriel de dimension n



¢ clim dim

est un ¢ -



esp . rect .
de 1 mais IR -



espace rect .
de 2 .




☐ 1kW est un 1K -



espace vectoriel de dimension infinie

, 2
Rappels sur les applications linéaires


Définition
-




Une application UK -

linéaire ) entre 2 K -




esp .
rect .
V, W est une application

f- :
✓ → w
tq
> × C- V f- ( ✗ + ) =
f- ( x) t f- ( y )
, y , y
>
FX E IK FX E V FCN ) =
✗ f- [ × )
, ,

-




Qd les 1K espaces vectoriels V et W dim finies de taille ( mm )

-

sont n
,
m matrice


M
=
[ f- (
Vj ) i ] des coordonnées des Fcvj ) dans la base (Wi ) i
ij
Fx =
MX




Théorème
.




L' application Q :
Lik ( V , W) →
M.mn ( IK )


f-

Mu , w (f)


envoie F matrice dans les bases V W est un isomphisme
qui sur sa
,




3
Rappel de réduction


Définition
-




Soit f V
endomorphisme On valeur de F tt

appelle ✗ Elk
:
v un .



propre

lequel f- ( )
il existe ✗ =/ 0
tq ✗×
=


pour x


Un vecteur satisfait la relation dessus est dit

qui ci vecteur propre
-




de F associé à la valeur propre × .




Les valeurs propres sont les racines Xfct)
=
det ( MF -

ti )


Diagonaliser un
endomorphisme F revient a- trouver une base ( ui ) i de ✓

constituer de valeurs propres .




On sait que F est
diagonalisable
:






si XF est scindé à racines simples
F matrice
si admet symétrique


une




Théorème -




F
Un endomorphisme sur 1K espace vectoriel est
trigonal isable Ssi ✗f scindé sur 1k
-
$5.90
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
elenaflt

Document also available in package deal

Get to know the seller

Seller avatar
elenaflt EPITA
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
2
Documents
3
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions