100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Complete Solution Manual A First Course in Probability 10th Edition Questions & Answers with rationales

Rating
-
Sold
3
Pages
163
Grade
A+
Uploaded on
12-06-2023
Written in
2022/2023

A First Course in Probability 10th Edition Solution Manual Complete Solution Manual A First Course in Probability 10th Edition Questions & Answers with rationales PDF File All Pages All Chapters Grade A+

Institution
Probability
Course
Probability











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Probability
Course
Probability

Document information

Uploaded on
June 12, 2023
Number of pages
163
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

A First Course in Probability 10th Edition Solution Manual Problems Chapter 1 1. (a) By the generalized basic principle of counting there are 26  26  10  10  10  10  10 = 67,600,000 (b) 26  25  10  9  8  7  6 = 19,656,000 2. 64 = 1296 3. An assignment is a sequence i1, …, i20 where ij is the job to which person j is assigned. Since only one person can be assigned to a job, it follows that the sequence is a permutation of the numbers 1, …, 20 and so there are 20! different possible assignments. 4. There are 4! possible arrangements. By assigning instruments to Jay, Jack, John and Jim, in that order, we see by the generalized basic principle that there are 2  1  2  1 = 4 possibilities. 5. There were 8  2  9 = 144 possible codes. There were 1  2  9 = 18 that started with a 4. 6. Each kitten can be identified by a code number i, j, k, l where each of i, j, k, l is any of the numbers from 1 to 7. The number i represents which wife is carrying the kitten, j then represents which of that wife’s 7 sacks contain the kitten; k represents which of the 7 cats in sack j of wife i is the mother of the kitten; and l represents the number of the kitten of cat k in sack j of wife i. By the generalized principle there are thu s 7  7  7  7 = 2401 kittens 7. (a) 6! = 720 (b) 2  3!  3! = 72 (c) 4!3! = 144 (d) 6  3  2  2  1  1 = 72 8. (a) 5! = 120 (b) 7! 2!2! (c) 11! = 1260 = 34,650 4!4!2! (d) 7! 2!2! = 1260 9. (12)! = 27,720 6!4! 1 2 5  5  5 5 5  2     2 2 Chapter 1 12. 103 − 10  9  8 = 280 numbers have at least 2 equal values. 280 − 10 = 270 have exactly 2 equal values. 13. With ni equal to the number of length i, n1 = 3, n2 = 8, n3 = 12, n4 = 30, n5 = 30, giving the answer of 83. 14. (a) 305 (b) 30  29  28  27  26 15. 16.  20       52      15. There are 10 12  possible choices of the 5 men and 5 women. They can then be paired up    in 5! ways, since if we arbitrarily order the men then the first man can be paired with any of the 5 women, the next with any of the remaining 4, and so on. Hence, there are possible results. 10 12  5!      18. (a)  6  +  7  +  4  = 42 possibilities.       (b) There are 6  7 choices of a math and a science book, 6  4 choices of a math and an economics book, and 7  4 choices of a science and an economics book. Hence, there are 94 possible choices. 19. The first gift can go to any of the 10 children, the second to any of the remaining 9 children, and so on. Hence, there are 10  9  8    5  4 = 604,800 possibilities. 2 10. (a) 8! = 40,320 (b) (c) (d) 2  7! = 10,080 5!4! = 2,880 4!24 = 384 11. (a) 6! (b) 3!2!3! (c) 3!4!  2  2  3   3 3     3 1 2  3  3     1 2 3 3 3 3 1 2  3  3      2 3 3 2  3  3  2  3 3 2  5        1 4 5 3     Chapter 1 3 20.  5  6  4  = 600     21. (a) There are  8 4  +  8 2  4         = 896 possible committees. There are  8 4  that do not contain either of the 2 men, and there are  8 2  4  that       contain exactly 1 of them. (b) There are  6  6  +  2  6  6  = 1000 possible committees.                (c) There are  7  5 +  7  5 +  7  5           = 910 possible committees. There are  7  5 in    which neither feuding party serves;  7  5 in which the feuding women serves; and     7  5        in which the feuding man serves. 22.  6  +  2  6 ,  6  +  6           23. 7! 3!4! = 35. Each path is a linear arrangement of 4 r’s and 3 u’s (r for right and u for up). For instance the arrangement r, r, u, u, r, r, u specifies the path whose first 2 steps are to the right, next 2 steps are up, next 2 are to the right, and final step is up. 24. There are 4! 2!2! paths from A to the circled point; and 3! 2!1! paths from the circled point to B. Thus, by the basic principle, there are 18 different paths from A to B that go through the circled point. 25. 3!23 26. (a) n  n  2k = (2 + 1)n k =0  k  (b) n  n  xk = ( x + 1)n k =0  k           3   3   5  5 5 4 Chapter 1 28.  52  13, 13, 13, 13 30.  12  = 12!  3, 4, 5 3!4!5! 31. Assuming teachers are distinct. (a) 48 (b)  8  = 8! = 2520.  2, 2, 2, 2  (2)4 32. (a) (10)!/3!4!2! (b) 3 3  7!  2  4!2! 33. 2  9! − 228! since 2  9! is the number in which the French and English are next to each other and 228! the number in which the French and English are next to each other and the U.S. and Russian are next to each other. 34. (a) number of nonnegative integer solutions of x1 + x2 + x3 + x4 = 8. Hence, answer is 11   = 165 (b) here it is the number of positive solutions —hence answer is  7  = 35   35. (a) number of nonnegative solutions of x1 + … + x6 = 8 answer = 13   (b) (number of solutions of x1 + … + x6 = 5)  (number of solutions of x1 + … + x6 = 3) = 10  8       

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
gradexam Chamberlain College Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
4924
Member since
3 year
Number of followers
3389
Documents
4041
Last sold
1 day ago
Learning is hard, but with us it will be easier. You have made the right choice!

Grade Exam specializes in providing study guides that include exams, tests, past work, and quiz questions. We work on every aspect and take into account your wishes every day!

4.1

670 reviews

5
387
4
123
3
77
2
17
1
66

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions