100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting van H8 (aminozuurmetabolisme), H9 (metabolisme van nucleotiden) en H10 (lipiden) Cel 3 GNK/THK UGent

Rating
5.0
(1)
Sold
1
Pages
45
Uploaded on
05-06-2023
Written in
2022/2023

Samenvatting van H8 (aminzuurmetabolisme), H9 (metabolisme van nucleotiden) en H10 (lipiden) op basis van cursus en lessen uit 2023. Cel 3 GNK/THK UGent

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 5, 2023
Number of pages
45
Written in
2022/2023
Type
Summary

Subjects

Content preview

H8: het aminozuurmetabolisme


1. Inleiding
eiwitten als bron van AZ

 Eiwitten= bestaan uit AZ
 Elementen: NH3; H; carboxyl en een restggroep
 mens moet dus ook N opnemen uit voeding: 30-40 g N / dag bv uit
vlees, melkproducten
 Deze opgenomen eiwitten worden eerst in de maag verteerd tot
oligopeptiden door pepsine (-> protease-activiteit)
 deze oligopeptiden worden vervolgens afgebroken in dunne darm tot
tri-dipeptiden/ AZ door chymotrypsine of trypsine
 Deze vrije AZ worden door mucosacellen opgenomen uit dunne darm,
naar bloed gebracht, opgenomen in cellen doorheen plasmamembraan
 Intracellulair worden ook lichaamseigen eiwitten afgebroken via
complexe intracellulaire systemen tot individuele AZ
 Mens kan ook een aantal AZ zélf maken vanuit
precursoren/intermediairen afkomstig van de glycolyse (-> niet-
essentiele AZ)

Samengevat: 3 manieren om AZ te verkrijgen:
 Afbreken van eiwitten uit voeding
 Eigen synthese via intermediairen van glycolyse
 Afbraak lichaamseigen eiwitten

Deze verkregen vrije AZ hebben heel wat functies in het lichaam, nl:
 Synthese van lichaamseigen eiwitten
 Synthese nucleotiden: purine, pyrimidine
 Synthese andere AZ
 Synthese haemring: porfyrine
 Synthese neurotransmitters

Het teveel aan vrije AZ NIET omgezet als reserve zoals bij glycogeen, maar
wordt in lever gekataboliseerd tot glucose en vetten -> energievoorziening
 ontstaat ureum: zorgt voor verwijdering van NH4+ uit organisme
 Lever: belangrijkste orgaan voor aminozuurmetabolisme want haalt haar
energie uit de afbraak van deze AZ


50

, Stikstofbalans
 N opgenomen uit voeding
 N afgescheiden bij katabolisme van AZ in vorm van ureum (in urine)

Dit leidt tot de stikstofbalans
 bij langdurige negatieve stikstofbalans (meer N uitgescheiden dan
opgenomen) zoals bv bij anorexia/ eenzijdige voeding gaat lichaam
beginnen met afbreken van spieren en vetweefsel
 Dit komt omdat lichaam niet alle AZ zelf kan maken!

 Essentiële AZ en aminozuururemieën
 Niet-essentiele AZ: lichaam kan deze AZ zelf maken vanuit
intermediairen van glycolyse
 essentiële AZ: moeten uit voeding worden opgenomen!

De 9 essentiële AZ zijn: (trucje: PVT TIM HALL)
Phenylalanine Phe Methionine Met
Valine Val Histidine His
Tryptophan Trp Arginine Arg (enkel voor kinderen)
Threonine Thr Leucine Leu
isoleucine Ile Lysine Lys
Bij prematuren: + Cysteïne (Cys)

 Alle 20 AZ, zowel essentieel als niet-essentieel, zijn nodig in het lichaam!
 Bij tekort van zelfs 1 AZ kan dit leiden tot negatieve stikstofbalans!

 Medische ziekte: phenylketonurie (PKU)
 Normaal wordt teveel aan Phe omgezet in Tyr
 bij phenylketonurie gaat omzetting niet door -> hoge concentratie Phe
 tast hersenweefsel aan + als neurotransmitter te gedragen!
 Tyr: kan onvoldoende zelf aangemaakt worden dus bij mensen met
phenylketonurie wordt Tyr een essentieel AZ dat uit voeding moet
opgenomen worden

 medische ziekte: Kwashiorkor
 Voornamelijk in arme landen waarbij door een eenzijdig dieet een
negatieve stikstofbalans ontstaan & lichaam dus spieren begint af te
breken of door tevroeg van moedermelk af te zijn
 Opgezwollen buik


51

,2. Biosynthese van aminozuren
 Oorsprong van α-NH2-groep
 NH4+ + alfa-ketoglutaarzuur + NADPH  NADP+ + glutamaat
 NH4 uit voeding (bepaalt mee Nbalans)
 Door glutamaat dehydrogenase

o Alfa-NH2 groep van de meeste AZ is afkomstig van de alfa-NH2 groep
van glutamaat via transamineringsreactie!
o Glutamine en glutamaat zijn belangrijke AZ voor aminozuursynthese

 koolstofskelet
 Mens kan 11 AZ zelf maken vanuit intermediairen van glycolyse
/citroencyclus / PPP / uit andere AZ
o Anabole en katabole wegen kunnen door elkaar lopen, bv: synthese van
een AZ kan ook afbraakweg zijn van het precursor aminozuur

 synthese door eenstapsreactie
 Pyruvaat + glutamaat  alanine + alfa-ketoglutaarzuur
 Door alanine transaminase (ALT)

 Oxaalacetaat + glutamaat  aspartaat + alfa-ketoglutaarzuur
 Door apsartaat transaminase (AST)

 Glutamaat + NH4+ + ATP  glutamine + H+
 Door glutamine synthetase

 Aspartaat + glutamine + ATP  asparagine + Glutamaat + AMP + PPi + H+
 Door asparagine synthetase

 Phenylalanine+ O2 + BH4  Tyrosine + H2O + BH2
 Door fenylalaninehydroxylase
 BH4 = tetrahydrobiopterine

 glutamaat als precursor voor proline en arginine
 glutamaat + NADH + ATP  Glutamaat semialdehyde + NAD + Pi + ADP
 door glutamaat semialdehyde-dehydrogenase
 Glu semialdehyde + NADH  proline + H2O + NAD
 Door pyrroline 5 carboxylaat-reductase



52

,  Ofwel: Glu semialdehyde + glutamine  ornithine + alfa-ketoglutaraat
 Door ornithine δ-aminotransferase
 Ornithine via uremucylcus omgezet in arginine
 reversibel

 synthese van serine
 3Pglycerinaat + NAD  fosfohydroxypyruvaat + NADH + H
 Door fosfoglyceraat-dehydrogenase
 Fosfohydroxypyruvaat  fosfoserine
 Door fosfoserine-aminotranferase
 Fosfoserine  serine
 Door fosfoserine fosfatase
 Serine + tetrahydrofolaat (THF)  glycine + methyleentetrahydrofolaat +
H2O


3. Dragers van 1C-eenheden
 Tetrahydrofolinezuur THF of FH4
 S-adenosyl-methionine SAM
 Overdracht van een radicaal dat 1 C bevat

 Het tetrahydrofolinezuur/tetraydrofolaat
 Afkomstig van het vitamine B9 foliumzuur/folaat uit voeding
 Folinezuur  tetrahydrofolaat
 2 staps
 Door folinezuurreductase = folaatreductase
 THF + serine  glycine + THF derivaat + H2O
 Serine geeft CH2 af door glycine weer af te splitsen
 Derivaten zijn N5 methyl THF of N10 formyl THF
Deze THF-derivaten fungeren als donors van C1-eenheden in een aantal
biosynthesen:
 Recyclage van methionine waarvoor ook cobalamine nodig is
 Purine en pyrimidinesynthese: thymine uit Uracil (met methyleen-THF)
en incorporatie van C2 en C8 in purinekern

 3 belangrijke functies:
1) metabolisme nucleotiden
2) metabolisme van AZ: omzetting van serine naar glycine, afbraak van
histidine naar glutatamaat, omzetting van cysteïne naar methionine
3) vorming van s-adenosylmethionine

53

Reviews from verified buyers

Showing all reviews
2 year ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
ASTHK Universiteit Gent
Follow You need to be logged in order to follow users or courses
Sold
16
Member since
3 year
Number of followers
11
Documents
7
Last sold
2 weeks ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions