QUANTUM NUMBER
It des
I It describes shell or
orbit Value
n = 1, 2, 3, 4,........ l=O➔
PRINCIPLE K, L, M, N,....... l=l➔
QUANTUM NUMBER
UNCERTAINTY In nth Shell
Number of subshells = n
AZIMUTHAL
QUANTUM NUMBER
PRINCIPLE Number of orbitals = n2
3
Number of electrons =2n2
It defines the angular
momentum
nh
mvr =-
h 2-rr
/lx./lP � 4n
h If 1
llx.m/lv ��
I I
Q. which of the following set of quantum 1}
I
Q. Find maximum no.of e having numbers is correct?
Q. Find angular momentum of 2}
Q. According to Heisenberg's uncertainty principle,
-½
m
l:,.x _ jj,p i ,:;, which of the following is correct ? (i) 2s orbital (ii) 3d orbital
1) 4 0 0 •t,,2
(il n=4,s= (ii) n=3,l=l,m=O
a) It l:,.x = 0 then jj,p = -
2) 5 2 3
_
� (111) �
-t,,2
(iii) 4p orbital (iv) e in 4th orbit n=2,1 =0 (iv) n=3,1 = 1
b) It l:,.v = 0 then jj,p = o 3} T
3) 2 -1 0 •t,,2
c) It l:,.p = 0 then l:,.x = - 4) 6 3 0
-1;2
4} O
d) All are correct
=J2<
R. Find uncertainty in velocity if uncertainty in
position is equal to uncertalnty in momentum.
h
a)
2� 1rm b)2�� � c) � �
� d)T�m:
Q. The uncertainty involved in the measurement of SHAPE OF ORBITALS
velocity within a distance of 0.1A0 is:
a) 5.79 x 10' mis b) 5.79 x 107 mis '""""'==-1..1) s orbital - Spherical shape
t
c) 5.79 • 10' mis d) 5.79 x 10 mis
5
2) p orbital - dumb bell shape �
1) Mono electronic species
Energy defined upon n 3) d orbital - double dumb bell shape
FILLING OF
Angular momentum 3s. 3p, 3d NODES ATOMIC ORBITAL
t 11s < 2s = 2p < 3s = 3p = 3d I 'I' ➔ e- wave function n=1
I
nth
E 2s, 2p
in orbit
L... ___.....;_
_____;__
_ ___._
z
'I' ➔ 11 =a
;,;;
ls probability of finding the
It des
I It describes shell or
orbit Value
n = 1, 2, 3, 4,........ l=O➔
PRINCIPLE K, L, M, N,....... l=l➔
QUANTUM NUMBER
UNCERTAINTY In nth Shell
Number of subshells = n
AZIMUTHAL
QUANTUM NUMBER
PRINCIPLE Number of orbitals = n2
3
Number of electrons =2n2
It defines the angular
momentum
nh
mvr =-
h 2-rr
/lx./lP � 4n
h If 1
llx.m/lv ��
I I
Q. which of the following set of quantum 1}
I
Q. Find maximum no.of e having numbers is correct?
Q. Find angular momentum of 2}
Q. According to Heisenberg's uncertainty principle,
-½
m
l:,.x _ jj,p i ,:;, which of the following is correct ? (i) 2s orbital (ii) 3d orbital
1) 4 0 0 •t,,2
(il n=4,s= (ii) n=3,l=l,m=O
a) It l:,.x = 0 then jj,p = -
2) 5 2 3
_
� (111) �
-t,,2
(iii) 4p orbital (iv) e in 4th orbit n=2,1 =0 (iv) n=3,1 = 1
b) It l:,.v = 0 then jj,p = o 3} T
3) 2 -1 0 •t,,2
c) It l:,.p = 0 then l:,.x = - 4) 6 3 0
-1;2
4} O
d) All are correct
=J2<
R. Find uncertainty in velocity if uncertainty in
position is equal to uncertalnty in momentum.
h
a)
2� 1rm b)2�� � c) � �
� d)T�m:
Q. The uncertainty involved in the measurement of SHAPE OF ORBITALS
velocity within a distance of 0.1A0 is:
a) 5.79 x 10' mis b) 5.79 x 107 mis '""""'==-1..1) s orbital - Spherical shape
t
c) 5.79 • 10' mis d) 5.79 x 10 mis
5
2) p orbital - dumb bell shape �
1) Mono electronic species
Energy defined upon n 3) d orbital - double dumb bell shape
FILLING OF
Angular momentum 3s. 3p, 3d NODES ATOMIC ORBITAL
t 11s < 2s = 2p < 3s = 3p = 3d I 'I' ➔ e- wave function n=1
I
nth
E 2s, 2p
in orbit
L... ___.....;_
_____;__
_ ___._
z
'I' ➔ 11 =a
;,;;
ls probability of finding the