100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Data Science 2 P4

Rating
-
Sold
1
Pages
51
Uploaded on
02-06-2023
Written in
2022/2023

Samenvatting data science 2 theorie van periode 4 aan Karel de Grote Hogeschool

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 2, 2023
Number of pages
51
Written in
2022/2023
Type
Summary

Subjects

Content preview

DS 2
P4




KDG | 2022-23




1

, Inhoudsopgave
Inhoudsopgave 2
1. Discriminant analyse 4
1.1 Begrippen 4
1.2 Inleiding 4
1.3 Karakteristieken 5
1.3.1 Descriptieve discriminant analyse 5
1.3.2 Predictieve discriminant analyse 5
1.3.3 Veronderstellingen mbt de data 6
1.4 In Python 6
1.4.1 Descriptief 6
1.4.2 Predictief 6
2. Evaluatiemetrieken 8
2.1 Wat zijn evaluatiemetrieken? 8
2.2 Classi catie-metrieken 8
2.1 Binaire vs. Multi-class classi catie 8
2.2 Metrieken voor binaire en multi-class classi catie 9
2.2.1 Confusion matrix 9
2.2.2 Accuracy 10
2.2.3 Precision (P) 11
2.2.4 Recall (R) 12
2.2.5 F-measure (F) 13
2.2.6 Binaire en multi-class 13
2.3 Metrieken enkel voor binaire classi catie 15
2.3.1 TP rate & FP rate 15
2.3.2 Receiver Operator Characteristic Curve 15
2.3 Evaluatiemetrieken in python 18
3. Neurale netwerken 20
3.1 Wat is een neuraal netwerk? 20

2


fi fi fi fi

, 3.1.1 Activatie functie 21
3.1.2 Arti cieel neuraal netwerk 21
3.1.3 Voorbeeld XOR 23
3.2 Waar gebruik je een ANN binnen Data Science? 25
3.3 Hoe leert een ANN? 26
3.3.1 Normaliseren van data 32
3.4 ANN in Python 32
3.4.1 Te zetten stappen: 32
3.4.2 Voorbeeld XOR 33
3.4.3 ANN parameters 35
3.4.4 Voorbeeld MNIST 36
3.4.5 Voorbeeld Cereals US 38
4. Meta-heuristieken 40
4.1 Inleiding - optimalisatieproblemen 40
4.2 Algoritme versus heuristiek 42
4.1.1 Wat is een algoritme en wat is een heuristiek 42
4.1.2 Computationele complexiteit 42
4.3 Soorten heuristiek 43
4.3.1 ’Custom made’-heuristieken 43
4.3.2 Eenvoudige heuristieken 43
4.3.3 ‘Lokale zoek’-heuristieken 44
4.3.4 Meta-heuristieken 44
4.4 Simulated Annealing 45
4.5 T abu search 46
4.6 Genetische algoritmen 47
4.6.1 Stap 1 47
4.6.2 Stap 2 48
4.6.3 Stap 5 48
4.6.4 Stap 6 49
4.6.5 In python 51

3


fi

, 1. Discriminant analyse
1.1 Begrippen
Sta s sche technieken toepasbaar op
• 1 variabele = Univariate sta s ek
• 2 variabelen = Bivariate sta s ek
• meerdere variabelen = Mul variate sta s ek




A ankelijke variabele: variabele waarover (met behulp van een sta s sche techniek) een voorspelling of
uitspraak wordt gedaan —> gevolg
Ona ankelijke variabele: variabele is die gebruikt wordt om voorspellingen of uitspraken op te baseren
—> oorzaak

Groepen kunnen wederzijds uitsluitende groepen zijn, bv mannen en vrouwen of overlappende
deelgroepen zijn, bv vakken van verschillende jaren in uw studietraject




1.2 Inleiding
Behoort tot de mul variate sta s ek

Doel: voor een nieuw gegeven waarneming, te bepalen tot welke van een aantal gegeven groepen van
waarnemingen deze het best thuis hoort.

De a ankelijke variabele is de groep. De ona ankelijke variabelen zijn de gegevens die gebruikt worden
om tot de groep te komen

bv blauw geen overgewicht, bruin overgewicht

X-as is enkel gewicht: hieraan kunnen we niet zien of iemand
overgewicht hee : we hebben ook lengte nodig
—> overgewicht is a ankelijk van lengte: sommige van dat
gewicht wel overgewicht sommige niet: overlappend
—> als we enkel naar gewicht of lengte kijken hebben we
zeker overlapping, als we BMI berekenen door 2 door elkaar te
delen hebben we nog maar klein deel overlapping
—> hierdoor kunnen we zeggen als BMI kleiner is dan bepaald getal je geen overgewicht hebt, dit kunnen
we zeggen omdat ze (bijna) niet meer overlappen




4


fhtifh
fhti

ft tifh ti ti ti ti ti ti fh ti ti

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
compie Karel de Grote-Hogeschool
Follow You need to be logged in order to follow users or courses
Sold
27
Member since
2 year
Number of followers
6
Documents
21
Last sold
2 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions