100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Celbiologie Deel 1 (1e Bach kine)

Rating
5.0
(1)
Sold
3
Pages
49
Uploaded on
28-05-2023
Written in
2022/2023

Alle lessen van celbiologie deel 1 worden in dit document samengevat, aangevuld met het handboek.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 28, 2023
Number of pages
49
Written in
2022/2023
Type
Summary

Subjects

Content preview

CELBIOLOGIE DEEL 1
HOOFDSTUK 1: introductie tot cellen

o Cytologie: beschrijven celstructuur en organellen (optische technieken)
o Biochemie: chemie van de cel, metabolisme, signaaltransductie …
o Genetica: erfelijke informatie (DNA)

Leven <-> niet – levende materie: levende cellen hebben dezelfde chemische samenstelling

Alle levende organismen bestaan uit 1 of meerdere cellen, basisstructuur van het leven.
Alle cellen ontstaan uit andere cellen: levende wezens planten zichzelf voort.

Basisstructuur: cel -> weefsels -> organen

Microscopie
Resolutie = hoever moeten objecten gescheiden zijn om ze als afzonderlijke entiteiten te
kunnen waarnemen (oog – 0,2mm en lichtmicroscoop – 0,25 um)
 Lichtmicroscoop – fluorescentie microscoop – laser (3D) – transmission elektron microscope

Cellen verschillen in voorkomen en functie, maar hebben dezelfde basischemie

Elke cel bevat genen opgeslagen onder de vorm van DNA. DNA wordt volledig
verdubbeld (replicatie) voor de cel kan delen. Daarna wordt het DNA
overgeschreven (transcriptie) naar 1-strengig RNA. Dit wordt dan vertaald in
proteïneketens (translatie) bestaande uit 20 aminozuren: genexpressie

Proteïnen bepalen het gedrag van de cel en hebben een katalytische functie.

Alle levende cellen evolueren uit eenzelfde voorouder-cel:
Genetische info in de cellen levert instructies voor vorm, functie en het gedrag
van cellen en organismen. Het genoom van alle cellen is identiek:
chromosomen, maar bv. huidcel en levercel hebben een andere functie omdat
verschillende delen worden vertaald naar eiwitten

Levende cellen kunnen zichzelf reproduceren via een auto-
katalytisch proces: 3 nucleotiden vormen een codon dat codeert
voor een aminozuur

Prokaryoten en eukaryoten

Prokaryoot: meest divers en uitgebreid Eukaryoot
- Celwand - Nucleus (kern) met kernmembraan
- Plasmamembraan - Cytoplasma met plasmamembraan
- Cytoplasma - Celorganellen
- DNA, ook ribosomen
Geen celwand
Bacteriën en archaea (overleven in extreme
omstandigheden) bevatten geen nucleus, geen celorganellen Dieren, planten en schimmels
(multicellulaire organismen)

,▪ Celkern (nucleus) met kernmembraan
DNA-moleculen vervat binnen een dubbel celmembraan met kernporiën.
Nucleolus (kernlichaam): aanmaak van rRNA en bevat ook mRNA.

▪ Mitochondria: Haalt ATP uit de oxidatie van voedsel = celademhaling

Primitieve eukaryote oercel heeft (aerobe) bacterie opgenomen:
kon zuurstof gebruiken om energie te genereren. Dit is verder
geëvolueerd als een mitochondriën.

Ze hebben een deel eigen DNA - wijst erop dat het oorspronkelijk
afzonderlijke cellen waren. Kunnen zichzelf nu niet meer volledig
reproduceren.


▪ Endoplasmatisch reticulum: hebben ribosomen gebonden die nodig zijn voor eiwitsynthese.
Staat ook in voor de aanmaak van membraancomponenten en afsplitsen van kleine vesikels die
naar andere organellen bv. het golgi-apparaat voor het verder afwerken van eiwitten of gaan uit
de cel.

▪ Golgi – apparaat: Stapeling van membranen waar eiwitten verder worden afgewerkt. Splitsen
vesikels af die versmelten met plasmamembraan om uit de cel gebracht te worden.

▪ Lysosomen: breken ongewenste moleculen af om te recycleren of uit te scheiden en halen hier
voedingsstoffen uit (afbraak & recyclage)

▪ Peroxysomen: bevatten enzymen die waterstofperoxide (H2O2) kunnen aanmaken en afbreken.

▪ Ribosomen: bestaan uit RNA en eiwitten die instaan voor de translatie. Ook prokaryoten hebben
ribosomen (maken eiwitten)




Endocytose + exocytose
= Het plasmamembraan omsluit zich rond moleculen waardoor er blaasjes/versikels worden
gevormd. De vesikels gaan naar het extracellulair milieu (export) of het membraan van de versikel
versmelt met plasmamembraan (import)

,Het cytoskelet: Prokaryoten kunnen goed afschermen, maar eukaryoten hebben een minder sterk
plasmamembraan en hebben daarom een skelet.

Filamenten (eiwitten) die zorgen voor de stevigheid, vorm en beweeglijkheid van de cel

Drie verschillende structuren
Intermediaire filamenten: tussen microtubuli en actinefilamenten
doorheen heel de cel.

Microtubuli: dikke holle cilinders, aaneenschakelingen tubuline
eiwitten. Belangrijk bij celdeling, chromosomen uit elkaar trekken.

Actine: fijnste draden. Liggen onder plasmamembraan -> lange
actinefilamenten voor beweging in de cel bv. verplaatsen celorganellen


Microtubuli tijdens mitose:

Bij celdeling vormen ze dikke bundels die
aanhechten op dochterchromatide om ze
naar de polen te brengen.



Modelorganismen: gebruiken we om dingen beter te bestuderen/begrijpen

• Escherichia coli = meest bekende (darm)bacterie: binnenin de cel weinig structuur (prokaryoot)

Zwarte korrels zijn DNA en er is een plasmamembraan +
celwand. Al de celinhoud zit binnenin de cel zonder verdere
compartimenten. Het is een darmbacterie.


Niet pathogene bacterie die gebruikt wordt om grote hoeveelheden DNA, eiwitten aan te maken
- Groeien heel snel, snelle voortplanting
- Vrij eenvoudig, klein genoom

• Gist: eencellige eukaryoten cel – studie van celdeling
- Groeit gemakkelijk en snel
- klein genoom (schimmel)

Men kon zien dat genen makkelijk uitgeschakelt konden worden en vervangen door andere genen die
toch functioneel konden zijn. Precieze werking van de cel is in grote maten afgeleid uit gisten.

• Planten: zandraket heeft een eenvoudige genetica, kennis over planten hierop gebaseerd.
• Dieren:
- Het fruitvliegje
- Caenorhabditis elegans (wormpje)
- Zebravis: embryo’s zijn transparant dus men kan makkelijk ontwikkeling volgen
- Muis: studies ontwikkeling, immuniteit en mutaties

, HOOFDSTUK 2: chemische componenten van de cel Alcohol: R-OH Ether: R-O-R’
Carbonzuur: R-C=OOH Ester: R-C=O-OR’
Biochemie Aldehyde: R-C=OH Amine: R-NH2
▪ Koolstofchemie/organische chemie Keton: R-C=O-R’ Amide: R-C=O-NH2
▪ Complex en zeer strikt geregeld
▪ Regeling door enzymen, in een waterig milieu bij constante temperatuur
▪ Polymere moleculen

Voornamelijk H C O N komen vaak voor in het lichaam (vrij specifieke samenstelling)

Elektronen op de buitenste schil bepalen hoe het atoom reageert

Covalente binding: bindingshoeken + bindingslengte + bindingsenergie = specifieke 3D structuur

Atomen delen elektronen: vrij sterke bindingen
 Polair covalent bij bindingen gaan interacties aan met andere bindingen (verschil in EN-waarde),
hoge wateroplosbaarheid! Dubbele (onverzadigde) bindingen zijn sterke bindingen die rotatie
van de 3D-structuur verhinderen.

Niet – covalente binding: er worden geen elektronen gedeeld. Zwakkere bindingen, maar
afhankelijk van het aantal bindingen kan je sterke complexen krijgen

▪ Ionische interacties: elektron wordt volledig afgegeven, tussen ionen: kation – anion
▪ Waterstofbruggen: tussen positieve H en negatief geladen O of N bv. nucleotiden in DNA
▪ Van der Waals bindingen: tijdelijke dipool, groter voor molecuul met meer elektronen
▪ Hydrofobe interacties: in waterig milieu wordt de ‘aantrekking’ tussen hydrofobe moleculen
veroorzaakt doordat ze worden afgestoten van water (lossen niet op)

Zwakke niet-covalente bindingen worden zwakker in waterig milieu: ze krijgen
competitie van polaire watermoleculen. Sterke covalente bindingen blijven even
sterk in waterig milieu, je hebt veel energie nodig om ze te breken.


Zichtbaar licht bevat niet genoeg energie om covalente bindingen te breken,
hierdoor kunnen wij overleven. Niet-covalente bindingen vallen wel uit
elkaar bij zichtbaar licht.

UV – stralen zijn wel sterk genoeg om covalente bindingen te breken
(insmeren)

Hydrofiele stoffen: polaire groepen vormen H-bruggen, ionen worden gehydrateerd
Hydrofobe stoffen: lossen niet op in water, kunnen geen H-bruggen vormen in water
Amfipatische stoffen: deels hydrofoob, deels polair of geladen bv. fosfolipiden

Sommige polaire moleculen vormen zuren en basen in water:
Het H-atoom heeft zijn proton bijna volledig gedoneerd aan de
rest van het molecule waardoor er enkel een proton H+ overblijft.
Deze zal vervolgens binden met water ter vorming van H3O+.
 H2O – H2O -> H3O+ + OH-: H+ veranderd van molecuul

Buffers: nodig om de cel neutraal te houden (zwak zuur en zwakke base)
$17.98
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all reviews
1 year ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
mattiseclaeys Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
40
Member since
2 year
Number of followers
14
Documents
25
Last sold
5 days ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions