100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Statistics notes

Beoordeling
-
Verkocht
-
Pagina's
2
Geüpload op
15-05-2023
Geschreven in
2022/2023

This is a collection of notes I took, summarizing reading material provided to me by my university. there are some highlighted points talking about figures or diagrams- please ignore those because the visuals weren't pasted into the document. instead, consider these notes as general definitions and explanations of key statistical terms. It isn't detailed or authentic- its just notes I took.

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Onbekend
Geüpload op
15 mei 2023
Aantal pagina's
2
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Factor analysis.

 multiple regression always postulates that one variable is dependent on other variables (add
this to multiple regression)>
 wish to reduce the complexity of our problem by reducing the number of variables being
studied
 Factor analysis has two main goals: 1. Data reduction 2. Detection of structure
 e two main classes of factor analysis: confirmatory factor analysis (CFA) and exploratory factor
analysis (EFA).
 Factor analysis assumes that the variables we measure are often manifestations of deeper,
underlying (or ‘latent’) variables.
 Latent variables generate or produce manifest variables, which are things we can observe and
measure.
 Another name for ‘latent variable’ is ‘factor’.
 A factor (or latent variable) is a hypothetical construct that generates (or represents) a set of
observed variables.
 A factor loading can be thought of as the correlation of an observed variable with a factor
 two main aims of factor analysis:
1. A desire to reduce complexity by reducing the number of variables in an analysis
2. A desire to find structure in the world by identifying the latent variables that underlie
observed data.
 frequently used kinds of factor analysis under EFA (exploratory factor analysis) are principal
component analysis (PCA) and principal factor analysis (PFA).
 PCA seeks a convenient, smaller set of basis variables, and PFA seeks an underlying, meaningful
structure
 When we combine a few similar factors into 1 construct, we lose the variance (less in the
dataset I guess)
 Its okay to lose some variance as long as its small.
 component extraction in a PCA proceeds by extracting eigenvectors (or components) that
resolve maximal variance.
 Analyse | Dimension Reduction | Factor – choose variables.
 We need to decide how many values we want to retain or combine, based on how much
variance we losing.
 Two frequently used rules of thumb are the Kaiser eigenvalue rule and the Cattell scree-plot
rule.
 Kaiser eigenvalue rule encourages the acceptance of only those components with an
eigenvalue greater than 1.
 the scree-plot rule, a line plot is drawn of the eigenvalues and arranged in descending order.
 high eigenvalues representing the peak, and the low values the scree
 where the slope descends into the scree is where the components stop being interpretable
and should be rejected
 scree plot is under display for when doing factor analysis/
 A newer method of deciding how many components to extract in a PCA is Horn’s parallel
analysis. Generate some fake correlations and get eigenvalues for them. Its nonsense data.
 If an eigenvalue from our data is greater than the corresponding eigenvalue from the random,
uncorrelated data, we can conclude that there is a ‘true’ component explaining the variance in
the variables.
$10.00
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
deemishagovender

Maak kennis met de verkoper

Seller avatar
deemishagovender University of KwaZulu-Natal
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
9
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen