100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Physics A - Quantum Waves, 2007 Revision Notes

Beoordeling
-
Verkocht
-
Pagina's
16
Geüpload op
06-05-2023
Geschreven in
2007/2008

University of Cambridge - Part IB Natural Sciences Physics A: notes on quantum mechanics and partial notes on waves.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Vak

Documentinformatie

Geüpload op
6 mei 2023
Aantal pagina's
16
Geschreven in
2007/2008
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Page 1 of 16



Waves
Generalities
Basics
 A wave is the means by which information about a
disturbance in one place is carried to another without
bulk translation of the intervening medium.
 To derive the wave equation, proceed as follows:
o Consider a wave travelling in the positive x
direction such that at t = 0, the function f(x)
describes the shape of the wave, such that
y(x , 0) = f (x )
o After time t has elapsed, the wave will have
moved a distance vt to the right (where v is
the velocity of the wave). As such
y(x , t ) = f (x - vt ) = y(x - vt, 0)
o If we let u = x – vt, then we have
y(x , t ) = f (u )
And by the chain rule
¶y ¶y ¶u df
= =
¶x ¶u ¶x du
2
¶y ¶ æç ¶y ö÷ ¶u d2 f
 = ç ÷ =
¶x 2 ¶y è ¶x ø÷ ¶x du 2
Similarly:
¶y ¶y ¶u df
= = -v
¶t ¶u ¶t du
2 2
¶y df
 2 = v2 2
¶t du
o Equating our terms for d f / du 2 :
2


¶2y 1 ¶2 y
=
¶x 2 v 2 ¶t 2
 Important notes on the wave equation:
o It applies to any sort of wave motion, of any
form – we have not specified the form of f.


Physics Revision Notes © Daniel Guetta, 2007

, Page 2 of 16

o It is linear in y , which means that the
principle of superposition applies.
 In general, we consider harmonic waves. Any other
waveform can be Fourier analysed into a number of
such harmonic waves. Harmonic waves take the form
y(x , t ) = A Re (e i(wt -kx ) )

Where (wt - kx ) is the phase of the wave, and
w 2p
k= =
vp l
Each of the two parts of this equality arise as follows:
o k is the rate at which the phase changes with
position. w is the rate at which the phase
changes with time, and vp is the rate at which it
moves with time. The first equality follows.
o At fixed time t, the phase of the wave changes
by 2p when the distance changes by l – the
second equality follows.
And
w = 2pn


Polarisation
 In transverse waves, the displacement of the medium
is perpendicular to the direction of motion of the
wave. There are therefore two orthogonal directions
along which the displacement can take place. The
amplitude and polarisation of the waves along these
two directions define the polarisation of the wave.
 Consider a wave travelling in the z direction. The x
and y components of the wave take the form
yy = Aye i (wt -kz )
yx = Axe i (wt -kz +f )
The wave can then be polarised in a number of ways.




Physics Revision Notes © Daniel Guetta, 2007

, Page 3 of 16

 Linear polarisation – every point on the string
oscillates parallel to a given line. We have:
o f = 0 or an integer multiple of p .
o The wave oscillates with amplitude
A = Ax2 + Ay2 at an angle arctan (Ay / Ax ) to
the x axis.
 Circular polarisation – sometimes, the
displacement will follow a circular path in the x-y
plane. For this to happen,
o f = p /2
o Ax = Ay
 Elliptical polarisation – this is the most general
way a wave can be polarised, for any parameters. The
displacement follows an elliptical path in the x-y
plane, as follows:
yy Ax

Ay
a yx



Where
2Ay Ax cos f
tan 2a =
Ay2 + Ax2


Impedance
 The concept of wave impedance is used to define the
relationship between the force and the wave response:
driving force
Impedance =
velocity response
It is extremely important to note that the velocity
response is the rate of change of displacement in the
medium, not the speed of propagation of the wave.
 The power fed into a wave is given by the product of
the driving force and velocity response. As such



Physics Revision Notes © Daniel Guetta, 2007
$2.99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
tandhiwahyono
2.0
(1)

Maak kennis met de verkoper

Seller avatar
tandhiwahyono University of Indonesia
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
8
Lid sinds
3 jaar
Aantal volgers
8
Documenten
861
Laatst verkocht
1 jaar geleden
iKnow

The iKnow store provides course materials, study guides, study notes, lecture notes, textbook summaries and exam questions with answers, for levels from high school students to universities and professionals. Everything with the best quality and world class.

2.0

1 beoordelingen

5
0
4
0
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen